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Long list of people who have contributed to this work: 

• Will Handley 
• Justin Alsing 
• Pablo Lemos 
• Peter Sims 
• Eloy de Lera Acedo 
• Anastasia Fialkov 

Papers: 

• arXiv:2205.12841 
• arXiv:2207.11457 
• arXiv:2305.02930 

Code: 

• https://github.com/htjb/margarine 
• https://github.com/htjb/

piecewise_normalizing_flows
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On going work
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• Building on work done in Alsing and Handley 2021 
arXiv:2102.12478 

• It was shown that we could use trained Normalizing 
Flows as priors in our Bayesian analysis 

• Possible because Normalizing Flows are bĳective 
and give access to probabilities
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Any prior you like?
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• Bĳective transformations from one probability 
distribution to another 

• Base distribution is usually a standard normal 

• Transformation is differentiable 

• If we say  then we can calculate 

 

• Equate  to Masked Autoencoder for Density 
Estimation [Germain et al. 2015 arXiv:1502.03509] 
architecture 

• Chain series of flows together to get Masked 
Autoregressive Flow (MAF)

x′ = f(x)

p(x′ ) = p( f −1(x′ )) det( δf −1(x′ )
δx′ )

f
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What are Normalizing Flows?
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• Python implementation with tensorflow, keras and 
scipy 

• Density estimation through Normalizing Flows 

• Easy to use with tutorials and a customer help line 
(email me!) 

• Continuously integrated tests 

• pip installable  

• https://github.com/htjb/margarine 
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margarine
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Why are Normalizing Flows useful?
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Samples and log probabilities
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• Experimental data sets are described by nuisance 
parameters  and core science parameters  

• Evaluating  is hard when we have samples on 
 

• Train density estimators on  to get  
marginalising over 

α θ

P(θ)
P(θ, α)

{θ} P(θ)
α
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Marginal distributions
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• Marginal Kullback-Lieber Divergence and Marginal 
Bayesian Model Dimensionality 

 

• Test on a known distribution with a 
 and find a value of  

• Independent of the nuisance parameters 

• Allows for comparisons across different 
experiments probing the same core science 

• For example with different experiments in 21-cm 
cosmology

𝒟(P | |π) = ∫ P(θ)(log P(θ) − log π(θ)δθ

𝒟 = 0.77 ± 0.03 0.821+0.004
−0.010
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Marginal Bayesian Statistics
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• With samples  and a corresponding evidence 
 we can define the marginal or nuisance-free 

likelihood as 

 

• Use margarine to access  and  

•  is much more useful than 

{θ, α}
Z

L(θ) =
∫ L(θ, α)π(θ, α)dα

∫ π(θ, α)dα
=

P(θ)Z
π(θ)

P(θ) π(θ)

L(θ) P(θ)
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Marginal likelihood functions
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• If we have  and  and we want to 
perform joint analysis we can access  and 

 and sample 

 

• Perform joint analysis without sampling nuisance 
parameters 

• Demonstrated this with Planck and the Dark Energy 
Survey 

• See Irene Abril-Cabezas’ and Simon Pochinda’s 
talks later today.

LA(θ, αA) LB(θ, αB)
LA(θ)

LB(θ)

log LAB(θ) = log LA(θ) + log LB(θ)
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Joint analysis
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Future work?

mailto:htjb2@cam.ac.uk


• Sample fast likelihood  and reweight samples 
onto slow likelihood  

 

• Pioneered for gravitational wave studies 

• Can have too few samples in  to properly 
describe  

• Emulate  and  with margarine and 
upsample until we have an appropriate 

A
B

PB(θ) = PA(θ)
LB(θ)
LA(θ)

PA(θ)
PB(θ)

PA(θ) LA(θ)
neff
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Enhanced Likelihood Reweighting
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Romero-Shaw et al. 2019 arXiv:2108.01284

Metha Prathaban Dominic Anstey
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• We can speed up run time using better proposal 
distributions for the prior (reducing KL divergence) 

 

• Previously explored with supernest (Petrosyan and 
Handley 2022 arXiv:2212.01760) 

• Low resolution (low ) sampling —> train 
margarine —> high resolution (high ) run 

t ∝ 𝒟KL

nlive
nlive
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Enhanced Nested Sampling
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High Resolution Low Res -> margarine 
-> High Res

Likelihood Calls 2,498,813
741,723 (190,818 + 

550,905, 30% of High 
Res run)

-23.33 -25.20log Z
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Issues?
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• Exploring high dimensional problems in context of 
flex knot modelling with Stefan Heimersheim 

• Potential to exploit independence of subspaces in 
the larger parameter space 

• Train sets of MAFs on independent parts of 
parameter space and sample in unison
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High dimensional distributions
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• Flows also struggle with multi-modal distributions 

• Topology of the base distribution is different from 
the topology of the target distribution 

• End up with bridges between the modes 

• Many techniques have been developed to tackle 
this issue [e.g Stimper et al 2022 arXiv:2110.15828]
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Multimodal Distributions
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• Making progress with margarine 

• Exploring the synergies between 
clustering algorithms and Normalizing 
Flows 

• Divide the target into clusters with 
topologies closer to base distribution 

• Train a MAF on each cluster 

• Draw samples from MAFs based on size of 
cluster in target distribution 

• Sum log-probabilities from each MAF
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Piecewise Normalizing Flows
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Piecewise Normalizing Flows
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• Normalizing Flows give us access to marginal probability distributions 

• Allows us to calculate marginal Bayesian statistics 

• Defined the marginal log-likelihood 

• Enhanced joint analysis pipelines 

• Potential for enhanced likelihood reweighting and enhanced Nested Sampling 

• Challenges surrounding high dimensions and multi-modal distributions 
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Conclusions
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Feel free to contact myself or Will if you think margarine could be useful in your work!
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