Truncated Marginal Neural Ratio Estimation

Simulation-based Inference Assembly

for

Large Forward Models

The challenges of better astrophysical data

More data leads to more objects.
More objects leads to more parameters.
More parameters leads to suffering.

"Large forward model"

A forward model generates samples $\mathbf{x}, \mathbf{z} \sim p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z})$. What makes forward models large?

1. Model Complexity

Number of parameters, variables and components. A "large" model in that sense includes many different factors and potentially complex interactions between them.

2. Amount of Data

Different data sources, volume of data. A "large" model in that sense would be one that can make predictions based on vast amounts of observational data.

3. Computational Resources

A "large" model requires significant computational power, memory, or time to run.

Observation: If a model is large enough, joined inference of $p(\mathbf{z} \mid \mathbf{x})$ becomes intractable.
Question: Can we develop practical alternatives to joined inference and still do science?

Truncated Marginal
 Neural Ratio Estimation

Neural Ratio Estimation (NRE)

NRE turns parameter inference into binary classification, and generates maximally informative* data summaries.
Generate training data
$\mathscr{D} \equiv\left\{\left(\mathbf{x}_{i}, \mathbf{z}_{i}\right) \mid i=1,2, \ldots, N\right\}$, where $\mathbf{x}, \mathbf{z} \sim p(\mathbf{x}, \mathbf{z})=p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z})$

Initialise real-valued neural network, $f_{\phi}(\mathbf{x}, \mathbf{z})$
Train neural network using the mini-batch loss function

$$
\begin{aligned}
\mathscr{L}(\phi) & =-\sum_{i \in B} \ln \sigma\left(f_{\phi}\left(\mathbf{x}_{i}, \mathbf{z}_{i}\right)\right)+\ln \sigma\left(-f_{\phi}\left(\mathbf{x}_{i}, \mathbf{z}_{P(i)}\right)\right) \\
Y & =1: \mathbf{x}, \mathbf{z} \sim p(\mathbf{x}, \mathbf{z}) \quad Y=0: \mathbf{x}, \mathbf{z} \sim p(\mathbf{x}) p(\mathbf{z})
\end{aligned}
$$

Here, B denotes a mini-batch, and P denotes random sample permutations.

After training, $f_{\phi}(\mathbf{x}, \mathbf{z}) \approx \ln r(\mathbf{x} ; \mathbf{z})=\ln \frac{p(\mathbf{z} \mid \mathbf{x})}{p(\mathbf{z})}$

Example network

Automatically learned data
summaries
*Data summary maximises distance between $p(\mathbf{z} \mid \mathbf{s}(\mathbf{x}))$ and $p(\mathbf{z})$ in terms of JS divergence.

Implicit likelihood (SBI, simulation-based inference)

Training NN* in the context of SBI $=>$ Automatic super-charged ABC.

Obtain optimal data summary

$$
t(\mathbf{x}) \equiv \mathrm{NN}_{\phi}^{(1)}(\mathbf{x})
$$

such that

$$
p(z \mid t(\mathbf{x})) \simeq p(z \mid \mathbf{x}) .
$$

Estimate posterior ($\epsilon \rightarrow 0$),

$$
r(\mathbf{x}, z) \equiv \mathrm{NN}_{\phi}^{(2)}(x, t(\mathbf{x})) \simeq \frac{p(z, t)}{p(z) p(t)}
$$

such that

$$
r(\mathbf{x}, z) \simeq \frac{p(z \mid \mathbf{x})}{p(z)}
$$

Neural ratio estimation (NRE)
Train a neural network to discriminate

- Real sims:
$z, \mathbf{x} \sim p(\mathbf{x} \mid z) p(z)$
- Scrambled sims: $z, \mathbf{x} \sim p(\mathbf{x}) p(z)$

Toy model: $\mathbf{x}=\mathbf{v} \cdot z^{2}+\boldsymbol{\epsilon}$

Marginal NRE (MNRE)

Often we are interested in marginal posteriors. Estimating the joined is only a intermediate step.

Result for parameter summary of interest, h

- 1-dim marginals for parameter inference $p\left(z_{3} \mid \mathbf{x}\right)$
- 1-dim conditional marginals for correlation studies $p\left(z_{4} \mid \mathbf{x}, z_{3}, z_{5}, z_{9}\right)$
- 2-dim marginals for studying parameter correlations $p\left(z_{4}, z_{7} \mid \mathbf{x}\right)$
- Classification probabilities for model comparison $p\left(M_{1} \mid \mathbf{x}\right), p\left(M_{2} \mid \mathbf{x}\right)$
- Probabilities for object detection $p\left(n_{i} \geq 1 \mid \mathbf{x}\right)$
- Probabilities for source detection $p\left(F_{i}>F_{t h} \mid \mathbf{x}, n_{i} \geq 1\right)$

Open questions: Can we do anything with marginal inference that we could do with the joined? (goodness of fit tests, posterior predictive distribution, ...)

Example MNRE: Planck cosmology

MNRE (and SBI in general) recovers correct marginal posteriors in the presence of correlations.

Based on
Planck HiLLiPoP likelihood

Sequential NRE (SNRE)

Hermans+ 2020, Durkan+ 2020,
Delaunoy+2022, Miller+ 2022
Sequential inference aims at increasing inference precision by employing proposal distributions $\tilde{p}(\mathbf{z})$ that focuses training data on relevant parts of the parameter space.

Example

- Strong lensing images
- Model with ~ 25 parameters, each truncated separately.
- We use 6 rounds, the final training data looks pretty much like the observation.

Target

Round 1

Round 2

Round 6

SNRE \& MNRE \Rightarrow Truncated Marginal Neural Ratio Estimation (TMNRE)

Combination of marginal and sequential inference requires truncated priors as proposals.

$$
\tilde{p}(\mathbf{z})=\frac{1}{Z} \rrbracket(\mathbf{z} \in \Gamma) p(\mathbf{z})
$$

$\rrbracket(\mathbf{z} \in \Gamma)$: Indicator function, which only allows values
within the truncation region Γ

$$
\Gamma=\left\{\mathbf{z} \in \mathbb{R}^{N}: \tilde{r}(\mathbf{x} ; \mathbf{z})>\epsilon\right\} \quad \tilde{r}(\mathbf{x} ; \mathbf{z}) \approx \frac{p(\mathbf{x} \mid \mathbf{z})}{p(\mathbf{x})}
$$

We define the truncation region as the region with high estimated likelihood-to-evidence ratio $\tilde{r}(\mathbf{x} ; \mathbf{z})$, and exclude regions with very low likelihood.

Open questions: How to best truncate under different circumstances? Parameter-wise?

Pretty niche (but growing exponentially?)

Rate of papers using TMNRE is growing exponentially

2021

1. "Fast and Credible Likelihood-Free Cosmology with Truncated Marginal Neural Ratio Estimation" Cole+ 2111.08030

2022

2. "Estimating the warm dark matter mass from strong lensing images with truncated marginal neural ratio estimation" Anau Montel+, 2205.09126
3. "SICRET: Supernova Ia Cosmology with truncated marginal neural Ratio EsTimation" Karchev+2209.06733 Talk: Kosio Karchev
4. "One never walks alone: the effect of the perturber population on subhalo measurements in strong gravitational lenses" Coogan+ 2209.09918
5. "Detection is truncation: studying source populations with truncated marginal neural ratio estimation" Anau Montel+ 2211.04291

2023 (first ~3 months)

6. "Debiasing Standard Siren Inference of the Hubble Constant with Marginal Neural Ratio Estimation" Gagnon-Hartman+ 2301.05241
7. "Constraining the X-ray heating and reionization using 21-cm power spectra with Marginal Neural Ratio Estimation" Saxena+ 2303.07339
8. "Peregrine: Sequential simulation-based inference for gravitational wave signals", Bhardwaj+ 2304.02035 Talk: James Alvey
9. "Albatross: A scalable simulation-based inference pipeline for analysing stellar streams in the Milky Way", Alvey+ 2304.02032

Applications

1）Sequential SBI for gravitational wave

TRUNCATED MARGINAL NEURAL RATIO ESTIMATION（TMNRE）WITH $\boldsymbol{\lambda}$ PEREGRINE

STEP 1：（RE－）SIMULATE

入 Sample parameters $\boldsymbol{\theta}_{\mathrm{GW}}$ from（truncated） prior $p\left(\boldsymbol{\theta}_{\mathrm{GW}}\right)$
－Simulate data $x \sim p\left(x \mid \boldsymbol{\theta}_{\mathrm{GW}}\right)$

$$
\boldsymbol{\theta}_{\mathrm{GW}} \equiv(q, \ldots) \rightarrow x\left(\boldsymbol{\theta}_{\mathrm{GW}}\right)=h\left(\boldsymbol{\theta}_{\mathrm{GW}}\right)+n_{\mathrm{IFO}}
$$

STEP 4：TRUNCATION

λ Use ratios $r\left(x_{0} ; \vartheta\right)$ to remove regions with vanishingly low posterior density
－If this leads to a reduction in prior volume，re－ simulate from Step 1 with truncated prior
λ Repeat until converged across all parameters， then obtain resulting posteriors

STEP 2：RATIO ESTIMATION

入 Train ratio estimators $r(x ; \vartheta)$ on simulated data to approximate the posterior－to－prior ratio $r(x ; \vartheta) \sim p(\vartheta \mid x) / p(\vartheta)$ for each set of parameters of interest $\vartheta=\left(\theta_{i}, \theta_{j}, \ldots\right)$

STEP 3：INFERENCE

入 Obtain a prior sample from $p(\vartheta)$
－Target a specific observation x_{0} and compute the ratios $r\left(x_{0} ; \vartheta\right)$ across the prior sample
\star Weight the samples according to this ratio

Sequential inference in multiple rounds

The first two truncation rounds

Truncation scheme: Neglect correlations

Inference includes correlations

Results

- Our results agree well with nested sampling, at 100x less simulation costs
- This enables usage of the best (but also slowest) waveform models for the analysis
- Anticipated use case: Precision analysis of complex signal situation (lensed, overlapping with glitches, multiple signals, etc)
- Our goal is not to upfront amortise all possible signals, but provide a framework for the fast precision analysis of individual signals

Bhardwaj+ 2304.02035

2) Strong lensing analysis of HST data

JVAS B1938+666

Summary

- First analysis that simultaneously fits source and lens light (usually lens light is subtracted)
- We do truncation using slice-sampling in 10+ dimensions to reduce training data variance
- First SBI application to real strong lensing data actually sensitive to subhalos

Truncation is connected to Nested Sampling

Neglecting correlations during truncation in general decreases precision, not accuracy.

Everywhere else: inconsistent with data

Rectangular bounding regions are inefficient in focusing the simulation with strongly correlated parameters onto the target observation.

This does not lead to wrong results, but simulation efficiency can be potentially improved with complex correlated bounds.

Talk: Kilian Scheutwinkel

Connection/Synergy: Nested sampling (MultiNest, PolyChord, Dynesty, ...) algorithms are good at this!

Truncation scheme: Include correlations

Round 1

Untruncated

Round 2: Box truncation (Based on 14 1-dim posteriors)

Round 3: "Nested" truncation (14 dimensional joined posterior, explored with slice sampling)

3) Source detection \& population analaysis

Four networks

- Source detection network (U-Net)
- Detection sensitivity network (MLP)
- Population parameters from detected sources (MLP)
- Population parameters from sub-threshold sources (object count network)

Truncation scheme: Source detection

Target observation \boldsymbol{x}_{o}

Round 1

Round 2

Integrating detected and sub threshold sources

Target observation \boldsymbol{x}_{o}

AFAIK this is the only method that can yield selfconsistently results for

- Catalogue of detected sources
- Sensitivity estimates
- Population parameter constraints from detected sources
- Population parameter constraints from undetected sources

Point source population parameters inference

- from sub-threshold sources: $p\left(\boldsymbol{\vartheta} \mid \boldsymbol{x}_{o}, \mathbb{I}_{\boldsymbol{x}_{o}}\left(\vec{s}_{\text {det }}\right)=1\right)$
- from detected sources: $p\left(\boldsymbol{\vartheta} \mathbb{I}_{x_{o}}\left(\overrightarrow{\boldsymbol{s}}_{\text {det }}\right)=1\right)$
- from combined constraints: $p\left(\boldsymbol{\vartheta} \mid \boldsymbol{x}_{o}\right)$
...... true values

4) Image analysis I

Towards image analysis with SBI: Sequential inference is also possible for high-dimensional image analysis problems

- Toy model: Exponentiated Gaussian random field

$$
x_{i}=e^{z_{i}}+\epsilon, \quad \mathbf{z} \sim \mathscr{G} \mathscr{P}
$$

- To this end, we train the joined likelihood

$$
\frac{p(\mathbf{x} \mid \mathbf{z})}{p(\mathbf{x})}
$$

Round 2

=> Posterior draws

Truncation scheme: ?

Maybe Proximal nested sampling? Cai+ 2106.03646

Example component separation

We learn the two high-dimensional likelihoods of each component, marginalised over the other components

$$
\frac{p\left(\mathbf{x} \mid \mathbf{z}_{1}\right)}{p(\mathbf{x})} \quad \frac{p\left(\mathbf{x} \mid \mathbf{z}_{2}\right)}{p(\mathbf{x})}
$$

Input fields (Exponentiated)

Mock data (color image)

Ongoing work: CW, Anau Montel, List

Hope for Large Forward Models?

Opportunity offered by Simulation based inference (SBI)

"Inference Assembly"

Inference assembly: Breaking a difficult inference task into digestible components, and combining different inference results into a cohesive whole.

Purpose

1.Model Integration

Merging different models or theories that make predictions about a phenomenon to form a composite model that can make more accurate or comprehensive predictions.

2.Method Integration

Combining different inference strategies (UNets, graph neural networks, CNNs, etc) to coherently perform distinct analysis tasks on the same data.

3.Data Synthesis

Compiling and integrating data from different sources or experiments to increase the robustness and reliability of inferences drawn.

4.Uncertainty Quantification

Assessing the confidence of different inferences and integrating these assessments into the final model or prediction.

Swyft

> https://github.com/undark-lab/swyft

- Swyft: An opinionated system for scientific simulation-based inference at scale
- Mission: Enabling Inference Assembly
- Key components:
- Marginal inference: Performing marginal inference for many parameters parallel
- Basic SBI algorithms: Binary classification/NRE - simple but sufficient for our use-cases
- General applicability: Works for complex hierarchical models with a large number of components

Research group with high pain threshold

Noemi Anau Montel (UvA), Strong lensing

Mathis Gerdes (UvA),
Stellar streams, QFT

Adam Coogan (Mila, U. Montreal), Strong lensing

Androniki Dimitriou (Valencia), Large scale structures

Alex Cole (UvA), Elias Dubbeldam CMB, 21 cm (UvA), Strong lensing

James Alvey
(UvA),
Stellar streams, GWs

Ben Miller (UvA), Kosio Karchev Algorithm \& (SISSA) software SN cosmology, strong lensing

Gilles Louppe (U. Liège) Anchal Saxena (Groningen)

Patrick Forré (UvA)
Samaya Nissanke (UvA)
Maxwell Cai, Meiert Grootes, Francesco Nattino (eScience)

Summary

- Simulation-Based Inference (SBI) is likely becoming a new standard for data analysis in our field, because it enables studying realistic complex models at low computational costs.
- TMNRE has the right set of ingredients to deal with potentially very high-dimensional models.
- Fully exploiting the potential of TMNRE requires new computational infrastructure, and poses interesting software design questions. With Swyft we provide our attempt solution.
- There are tons of potential applications. We are open for discussions and collaborations on all fronts.

Thank you!

Backup

Graphical model for Fermi data (my attempt)

Can we miss modes? - It depends...

Let's consider two simple examples which have similar likelihood functions around the observation.

Model A: Tight linear relation

$$
\begin{gathered}
z \sim \mathscr{U}(-1,1) \quad \epsilon \sim \mathscr{N}(0,0.005) \\
x=z+1+\epsilon
\end{gathered}
$$

Model B: "Resonance"

$$
z \sim \mathscr{U}(-1,1) \quad \epsilon \sim \mathscr{N}(0,0.1)
$$

$$
x=\frac{1}{1+\left(\frac{z}{0.01}\right)^{2}}+\epsilon
$$

Marginal inference with SBI

*We trained 190 2-dim posterior estimators for this. That is much better than training a single 20-dim posterior and then marginalising.

$$
N_{p}=1
$$

$$
N_{p}=10
$$

$$
N_{p}=20
$$

Estimating marginals is trivial with SBI

Training a neural network $f(\mathbf{x} ; \mathbf{z})$ with $\mathbf{x}, \mathbf{z} \sim p(\mathbf{x}, \mathbf{z})$
\longrightarrow estimates the joined posterior, $p(\mathbf{z} \mid \mathbf{x}) / p(\mathbf{z})$.

Training a neural network $f(u ; \mathbf{z})$ with $\mathbf{x}, u(\mathbf{z}) \sim p(\mathbf{x}, \mathbf{z})$
\longrightarrow estimates the marginal posterior, $p(u \mid \mathbf{x}) / p(u)$.

In a likelihood-based setting we would have to perform the high-dim integral:

$$
p(u \mid \mathbf{x})=\int d \mathbf{z} \delta(u-u(\mathbf{z})) p(\mathbf{z} \mid \mathbf{x})
$$

