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• ~6 Gamma-ray sources 
• Diffuse emission

• 188 Gamma-ray sources 
• Extended point sources 
• Resolved gas emission

• 6658 Gamma-ray sources 
• Highly resolved gas 
• Many extended sources 
• Fermi bubbles 
• GeV excess 
• Dark gas 
• …

1972-1973 1991 - 2000 2008 - now

The challenges of better astrophysical data

Abdollahi+ 2201.11184

Casandjian 0806.0113
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More data leads to more objects. 
More objects leads to more parameters. 
More parameters leads to suffering.



“Large forward model”
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A forward model generates samples . What makes forward models large? 

1. Model Complexity 
Number of parameters, variables and components. A “large” model in that sense includes many different 
factors and potentially complex interactions between them. 

2. Amount of Data 
Different data sources, volume of data. A “large” model in that sense would be one that can make 
predictions based on vast amounts of observational data. 

3. Computational Resources 
A “large” model requires significant computational power, memory, or time to run.

x, z ∼ p(x |z)p(z)

Observation: If a model is large enough, joined inference of  becomes intractable. 

Question: Can we develop practical alternatives to joined inference and still do science? 

p(z |x)



Truncated 
Marginal 
Neural Ratio Estimation
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Neural Ratio Estimation (NRE)

5

Generate training data  
, where 𝒟 ≡ {(xi, zi) ∣ i = 1,2,…, N} x, z ∼ p(x, z) = p(x |z)p(z)

Initialise real-valued neural network, fϕ(x, z)

After training, fϕ(x, z) ≈ ln r(x; z) = ln
p(z |x)

p(z)

Train neural network using the mini-batch loss function 

ℒ(ϕ) = − ∑
i∈B

ln σ( fϕ(xi, zi)) + ln σ(−fϕ(xi, zP(i)))

Here,  denotes a mini-batch, and  denotes 
random sample permutations.

B P
Y = 1 : x, z ∼ p(x, z) Y = 0 : x, z ∼ p(x)p(z)

Example network

NRE turns parameter inference into binary classification, and generates maximally informative* data summaries.

Automatically learned data 
summaries

Hermans+ 1903.04057 (neural ratio estimation) 
*Data summary maximises distance between 

 and  in terms of JS divergence.p(z |s(x)) p(z)



Neural ratio estimation (NRE) 
Train a neural network to discriminate 
• Real sims: 
• Scrambled sims:

Implicit likelihood (SBI, simulation-based inference)

Obtain optimal data summary 
 
 
such that

Estimate posterior ( ), 
 
 
 
such that

ϵ → 0

t(x) ≡ NN(1)
ϕ (x)

r(x, z) ≡ NN(2)
ϕ (x, t(x)) ≃

p(z, t)
p(z)p(t)

Gutman&Hyvärinen 2010 (as NCE), Mnih&Teh 2012 (self-normalizing), 
Hermans+ 1903.04057 (neural ratio estimation) 
Miller+ 2107.01214

z, x ∼ p(x)p(z)
z, x ∼ p(x |z)p(z)

p(z | t(x)) ≃ p(z |x) .

r(x, z) ≃
p(z |x)

p(z)
.

Training NN* in the context of SBI  
=> Automatic super-charged ABC.
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*I discuss here Likelihood-to-evidence neural ratio estimation. There are multiple 
approaches that have the same asymptotic behaviour. Training is here done using a simple 

binary cross entropy loss, there are multiple other approaches with the same goal, which 
work however for similar reasons; see e.g. Cranmer+ 1911.0142 for a review

Points

Contour

Toy model: x = v ⋅ z2 + ϵ



Marginal NRE (MNRE)
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• 1-dim marginals for parameter inference 
 

• 1-dim conditional marginals for correlation studies 
 

• 2-dim marginals for studying parameter correlations 
 

• Classification probabilities for model comparison 
 

• Probabilities for object detection 
 

• Probabilities for source detection 
 

p(z3 |x)

p(z4 |x, z3, z5, z9)

p(z4, z7 |x)

p(M1 |x), p(M2 |x)

p(ni ≥ 1 |x)

p(Fi > Fth |x, ni ≥ 1)

h ∼ p(h |x)

h = h(z)

z ∼ p(z |x)

Statistical model p(x, z) = p(x |z)p(z)

Joined inference Marginal SBI

Projection

Result for parameter summary of interest, h

Open questions: Can we do anything with marginal inference that we could do with the joined? 
(goodness of fit tests, posterior predictive distribution, …)

Often we are interested in marginal posteriors. Estimating the joined is only a intermediate step.



Example MNRE: Planck cosmology
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Cole+ 2111.08030

MNRE (and SBI in general) recovers correct marginal posteriors in the presence of correlations.

fϕ(x; Ωc, Ωb)

fϕ(x; ns, Ωc)

Based on  
Planck HiLLiPoP likelihood  



Sequential NRE (SNRE)
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Round 1 Round 2 Round 6

…

Tr
ai

ni
ng

 

Example 
• Strong lensing images 
• Model with ~25 parameters, each truncated separately. 
• We use 6 rounds, the final training data looks pretty much like the 

observation.

Sequential inference aims at increasing inference precision by employing proposal distributions  
that focuses training data on relevant parts of the parameter space. 

p̃(z)

Increasing 
inference 
precision

Image credit: Noemi Anau Montel

Hermans+ 2020, Durkan+ 2020, 
Delaunoy+ 2022, Miller+ 2022

Target



SNRE & MNRE  Truncated Marginal 
Neural Ratio Estimation (TMNRE)

⇒
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p̃(z) =
1
Z

𝕀(z ∈ Γ)p(z)

[Miller+ 2011.13951, 2107.01214 - swyft & TMNRE]

Γ = {z ∈ ℝN : r̃(x; z) > ϵ}

: Indicator function, which only allows values 
within the truncation region 
𝕀(z ∈ Γ)

Γ

We define the truncation region as the region with high estimated likelihood-
to-evidence ratio , and exclude regions with very low likelihood.r̃(x; z)

r̃(x; z) ≈
p(x |z)
p(x)

Combination of marginal and sequential inference requires truncated priors as proposals.

Open questions: How to best truncate under different circumstances? Parameter-wise? 
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Statistical data analysis

Deep-learning SBI

“Marginal SBI”

Sequential SBI

VI

Our method

Pretty niche (but growing exponentially?)
Rate of papers using TMNRE is growing exponentially 

2021 
1. “Fast and Credible Likelihood-Free Cosmology with Truncated Marginal 

Neural Ratio Estimation“ Cole+ 2111.08030 

2022 
2. “Estimating the warm dark matter mass from strong lensing images with 

truncated marginal neural ratio estimation” Anau Montel+, 2205.09126 
3. “SICRET: Supernova Ia Cosmology with truncated marginal neural Ratio 

EsTimation” Karchev+2209.06733 
4. “One never walks alone: the effect of the perturber population on 

subhalo measurements in strong gravitational lenses” Coogan+ 
2209.09918 

5. “Detection is truncation: studying source populations with truncated 
marginal neural ratio estimation” Anau Montel+ 2211.04291 

2023 (first ~3 months) 
6. “Debiasing Standard Siren Inference of the Hubble Constant with 

Marginal Neural Ratio Estimation” Gagnon-Hartman+ 2301.05241 
7. “Constraining the X-ray heating and reionization using 21-cm power 

spectra with Marginal Neural Ratio Estimation” Saxena+ 2303.07339 
8. “Peregrine: Sequential simulation-based inference for gravitational wave 

signals”, Bhardwaj+ 2304.02035 
9. “Albatross: A scalable simulation-based inference pipeline for analysing 

stellar streams in the Milky Way”, Alvey+ 2304.02032

Miller+ 2011.13951

Talk: Kosio Karchev

Talk: James Alvey



Applications
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1) Sequential SBI for gravitational wave 

13
Bhardwaj+ 2304.02035 Related work: Dax+ 2106.12594



Sequential inference in multiple rounds
The first two truncation rounds

14Image credit: Udditap Bhardwaj



Truncation scheme: Neglect correlations
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Truncation 
scheme

z1
z2

zN

Bhardwaj+ 2304.02035



Inference includes correlations
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Results 
•Our results agree well with nested sampling, at 100x less 
simulation costs 

•This enables usage of the best (but also slowest) 
waveform models for the analysis 

•Anticipated use case: Precision analysis of complex 
signal situation (lensed, overlapping with glitches, 
multiple signals, etc) 

•Our goal is not to upfront amortise all possible signals, 
but provide a framework for the fast precision analysis of 
individual signals

Related work: Dax+ 2106.12594

Bhardwaj+ 2304.02035



2) Strong lensing analysis of HST data
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Vegetti et al. (2012) - subhalo detection claim
Şengül et al. (2021) - detection reanalysed

Summary 
• First analysis that simultaneously fits source and lens 

light (usually lens light is subtracted)

• We do truncation using slice-sampling in 10+ 

dimensions to reduce training data variance

• First SBI application to real strong lensing data actually 

sensitive to subhalos

JVAS B1938+666

Anau Montel+ 23xx.yyyyy

https://www.nature.com/articles/nature10669#MOESM262
https://arxiv.org/pdf/2112.00749.pdf


Truncation is connected to Nested Sampling
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Consistent with data

Rectangular bounding regions are inefficient in focusing 
the simulation with strongly correlated parameters onto 

the target observation.  

This does not lead to wrong results, but simulation 
efficiency can be potentially improved with complex 

correlated bounds. 

Everywhere else: inconsistent with data

Connection/Synergy: Nested sampling 
(MultiNest, PolyChord, Dynesty, …) 

algorithms are good at this!

Neglecting correlations during truncation in general decreases precision, not accuracy.

Image credit: Kosio Karchev, Will Handley

Talk: Kilian Scheutwinkel



Truncation scheme: Include correlations
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Round 1  
Untruncated

Round 2: Box truncation 
(Based on 14 1-dim posteriors)

Round 3: “Nested” truncation 
(14 dimensional joined posterior, 
explored with slice sampling)

zsub

zmain

zsub = (x, y, M)

Truncation 
scheme

Anau Montel+ 23xx.yyyyy
PRELIMINARY



3) Source detection & population analaysis 

20
Anau Montel, CW 2211.04291

Four networks 
•Source detection network (U-Net) 
•Detection sensitivity network (MLP) 
•Population parameters from detected sources (MLP) 
•Population parameters from sub-threshold sources (object count network)



Truncation scheme: Source detection  
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Round 1

Round 2zs1

zsub−det

zs2

zsK
Truncation 

scheme
Anau Montel, CW 2211.04291



Integrating detected and sub threshold 
sources
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AFAIK this is the only method that can yield self-
consistently results for 
•Catalogue of detected sources 
•Sensitivity estimates 
•Population parameter constraints from detected sources 
•Population parameter constraints from undetected 
sources

TMNRE

Anau Montel, CW 2211.04291



4) Image analysis I
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xi = ezi + ϵ , z ∼ 𝒢𝒫

p(x |z)
p(x)

Towards image analysis with SBI: Sequential inference is also possible for high-dimensional 
image analysis problems

• Toy model: Exponentiated Gaussian random 
field 

• To this end, we train the 
joined likelihood

Round 1

Round 2

Round 3

=> Posterior draws

z

Truncation 
scheme Ongoing work: CW, Anau Montel, List(Gaussian approx)



Truncation scheme: ?
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Example component separation 
We learn the two high-dimensional likelihoods of each 
component, marginalised over the other components

p(x |z1)
p(x)

Input fields 
(Exponentiated)

Reconstructed 
fields

p(x |z2)
p(x)

Mock data 
(color image)

z1

z2Truncation 
scheme

Ongoing work: CW, Anau Montel, List

Maybe Proximal nested sampling? Cai+ 2106.03646



Hope for Large Forward Models?
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Full model with parameters z1, z2, z3

Analysis 
for z1

Results in general dependent on data 
cuts, model approximations, analysis 

methods.

Simplified 
model 1

Data cut 1

Analysis 
for z2

Simplified 
model 2

Data cut 2

Analysis 
for z3

Simplified 
model 3

Data cut 3

Data

Full model with parameters z1, z2, z3

Analysis 
for z1

Coherent conclusions based on the 
full model and all data.

NN1

Analysis 
for z2

NN2

Analysis 
for z3

NN3

Data

+

Traditional inference (usually likelihood-based)

Opportunity offered by 
Simulation based inference (SBI)



“Inference Assembly”
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Inference assembly: Breaking a difficult inference task into digestible components, 
and combining different inference results into a cohesive whole.

1.Model Integration 
Merging different models or theories that make predictions about a phenomenon to form a composite 
model that can make more accurate or comprehensive predictions. 

2.Method Integration 
Combining different inference strategies (UNets, graph neural networks, CNNs, etc) to coherently 
perform distinct analysis tasks on the same data. 

3.Data Synthesis 
Compiling and integrating data from different sources or experiments to increase the robustness and 
reliability of inferences drawn. 

4.Uncertainty Quantification 
Assessing the confidence of different inferences and integrating these assessments into the final model 
or prediction.

Purpose



Swyft

• Swyft: An opinionated system for scientific simulation-based inference at scale 


• Mission: Enabling Inference Assembly 

• Key components:


• Marginal inference: Performing marginal inference for many parameters parallel


• Basic SBI algorithms: Binary classification/NRE - simple but sufficient for our use-cases


• General applicability: Works for complex hierarchical models with a large number of 
components

27

See also: https://github.com/mackelab/sbi & 

https://github.com/undark-lab/swyft

https://github.com/mackelab/sbi


Research group with high pain threshold
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❤
(A bit outdated, sorry)

Thanks!



Summary
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• Simulation-Based Inference (SBI) is likely becoming a new standard for data analysis in 
our field, because it enables studying realistic complex models at low computational 
costs.


• TMNRE has the right set of ingredients to deal with potentially very high-dimensional 
models.


• Fully exploiting the potential of TMNRE requires new computational infrastructure, and 
poses interesting software design questions. With Swyft we provide our attempt 
solution.


• There are tons of potential applications. We are open for discussions and collaborations 
on all fronts.

Thank you!



Backup
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Graphical model for Fermi data (my attempt)
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zgas ∼ p(zgas)

zISRF ∼ p(zISRF)

zpsc ∼ p(zpsc |zpop)

zpop ∼ p(zpop)

zprop ∼ p(zprop)zCRsrc ∼ p(zCRsrc) zB ∼ p(zB)

zCR ∼ p(zCR |zCRsrc, zprop, zB, zISRF)

zbub ∼ p(zbub)
zdm ∼ p(zdm)

zpi0 ∼ p(zpi0 |zgas, zCR)

zICS ∼ p(zICS |zCR, zB, zISRF)

ztot ∼ p(zpi0, zICS, zpsc, zbub, zdm)

x ∼ p(x |ztot)



Can we miss modes? - It depends…

32

x = z + 1 + ϵ

z ∼ 𝒰(−1,1) ϵ ∼ 𝒩(0,0.005)

x =
1

1 + ( z
0.01 )

2 + ϵ

Let’s consider two simple examples which have similar likelihood functions 
around the observation.

Model A: Tight linear relation Model B: “Resonance”

Model B

Model A

Posterior for model A

Posterior for model B

(These are quick&dirty results for illustration)

Mode hard to miss

Mode easy to miss

z ∼ 𝒰(−1,1) ϵ ∼ 𝒩(0,0.1)

Observation xo = 1.0



Marginal inference with SBI

*We trained 190 2-dim posterior estimators for this. 
That is much better than training a single 20-dim 

posterior and then marginalising.

Miller+ 2011.13951
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MNRE* result

Correct:

Np = 10 Np = 20Np = 1

Nsims ∝ Nγ
p with γ ≃ 0



Estimating marginals is trivial with SBI
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p(u |x) = ∫ dz δ(u − u(z))p(z |x)

In a likelihood-based setting we would have to perform the high-dim integral:

Training a neural network  with   

—> estimates the joined posterior, .

f(x; z) x, z ∼ p(x, z)

p(z |x)/p(z)

Training a neural network  with  

—> estimates the marginal posterior, .

f(u; z) x, u(z) ∼ p(x, z)

p(u |x)/p(u)


