

### Survey Cosmology in the Rubin Era

### Hiranya V. Peiris

### UCL and Oskar Klein Centre Stockholm





European Research Council







### Electromagnetic cosmological probes in the next decade



Cosmic Microwave Background



Large Scale Structure

time ate



Figure: Andreu Font-Ribera



### **Observational frontier with galaxy surveys**



<u>Spectroscopic</u> DESI (ground)



<u>Photometric</u> LSST (ground), Euclid (space), Roman (space)







37 billion objects in space and time
30 trillion measurements
60 PB raw data (20 TB/night)

# LSST: survey of 18,000 sq deg (half the sky)

#### Dark matter-Dark energy Solar system inventory





#### "Movie of the Universe"



#### Mapping the Milky Way



Slide adapted from Ian Shipsey



### How should we compare







### Data?

### **LSST and Dark Energy Science**



Measuring if / how dark energy evolves with time

### Spectroscopic vs photometric samples

![](_page_6_Figure_1.jpeg)

### Photometric catalogues require **redshift estimation**

![](_page_7_Figure_0.jpeg)

### N(z): redshift distribution inference is challenging

![](_page_8_Picture_1.jpeg)

- Spectroscopic training / calibration samples are:
- not representative of photometric catalogues (due to brighter flux limits and population evolution)
- heterogeneous and contain difficultto-model selection effects
- Introduces biases which are difficult to mitigate at required precision

Figure: Myles et al (DES Collaboration 2021)

![](_page_8_Picture_8.jpeg)

![](_page_8_Picture_9.jpeg)

![](_page_8_Picture_10.jpeg)

### Forward modelling for n(z)

#### n(z): integral over selection x data model x population model

# $n(z) \equiv P(z|S)$ $= \frac{1}{P(S)} \int \left[ \iint P(S|\mathbf{\hat{f}}, \theta) \right]$

$$P(\hat{\mathbf{f}}|\theta, z, \sigma) P(\sigma) d\hat{\mathbf{f}} d\sigma \left[ P(\theta, z) d\theta \right]$$

### **Redshift distribution inference for static cosmology**

![](_page_10_Picture_2.jpeg)

Alsing, Peiris, Leja, Hahn, Tojeiro, Mortlock, Leistedt, Johnson, Conroy (ApJS, 2020); LEISTEDT, MORTLOCK AND PEIRIS (MNRAS, 2016)

• Key idea: high-dimensional Bayesian hierarchical model with machine-learned parts.

- Neural network emulation of FSPS population synthesis model, describing realistic galaxy populations (replace templates).

![](_page_10_Figure_6.jpeg)

![](_page_10_Picture_7.jpeg)

### Forward modelling for n(z)

#### **n(z):** integral over selection x data model x population model

$$n(z) \equiv P(z|S)$$
  
=  $\frac{1}{P(S)} \int \left[ \iint P(S|\mathbf{\hat{f}}, \theta, z) P(\mathbf{\hat{f}}|\theta, z, \sigma) P(\sigma) d\mathbf{\hat{f}} d\sigma \right] P(\theta, z) d\theta$ 

#### **Advantages:**

- of photometric catalogues (due to brighter flux limits and population evolution)
- extra priors for objects with extra information)
- Connects cosmology with galaxy evolution

• Does not rely on spectroscopic redshift calibration — spec-z catalogues not representative

• Auxiliary data (spec-z, extra surveys) can be included seamlessly (extended data vector or

### **Broadband data: does it work?**

Simulated galaxy population (encoding galaxy evolution calibrated to observations), combined with data model and selection cuts, should be able to predict redshift distribution.

![](_page_12_Figure_2.jpeg)

Selection for GAMA survey

ALSING ET AL. (2022 APJS)

![](_page_12_Picture_5.jpeg)

![](_page_12_Picture_6.jpeg)

### Validation with broadband data

![](_page_13_Figure_1.jpeg)

![](_page_13_Picture_3.jpeg)

#### ALSING ET AL. (2022, APJS)

![](_page_13_Picture_5.jpeg)

### Narrow-band data: validation with COSMOS2020

![](_page_14_Figure_1.jpeg)

**Photometric data:** COSMOS2020 multiwavelength Farmer catalogue **Population model:** Prospector-alpha emulators of both fluxes and emission lines

#### COSMOS2020

- **Data model:** Optimization of zero-points per band and (broadband and emission line) hyperparameters

WEAVER ET AL (2021), LEISTEDT ET AL. (2022, APJS)

![](_page_14_Picture_8.jpeg)

### Validation with narrow-band data

![](_page_15_Figure_1.jpeg)

Representative of bright sources

**Photometric data:** COSMOS2020 multiwavelength Farmer catalogue **Population model:** Prospector-alpha emulators of both fluxes and emission lines

Representative of colours

"Spec-z quality"

- **Data model:** Optimization of zero-points per band and (broadband and emission line) hyperparameters

![](_page_15_Picture_9.jpeg)

![](_page_15_Picture_10.jpeg)

![](_page_15_Picture_11.jpeg)

![](_page_16_Picture_0.jpeg)

#### • Hierarchical inference not scalable?

Already made progress on simulation-based inference approach — advantage of not needing to explicitly model selection effects parametrically, only to forward model them in a simulation.

#### • Is the SPS population prior good enough for deeper data?

Improvements to population prior (star formation history and dust modelling). Population prior being calibrated on COSMOS2020 catalogue.

#### • How do we validate analyses of deeper data when little spectroscopy available?

Developing posterior predictive checks in colour/flux space (Bayesian "cross-validation")

### Next steps!

![](_page_16_Picture_8.jpeg)

![](_page_16_Picture_9.jpeg)

SINAN DEGER, STEPHEN THORP, WORK IN PROGRESS

![](_page_16_Picture_11.jpeg)

![](_page_17_Picture_0.jpeg)

![](_page_17_Picture_1.jpeg)

![](_page_17_Picture_2.jpeg)

37 billion objects in space and time
30 trillion measurements
60 PB raw data (20 TB/night)

# LSST: survey of 18,000 sq deg (half the sky)

#### Dark matter-Dark energy Solar system inventory

![](_page_17_Picture_6.jpeg)

![](_page_17_Picture_7.jpeg)

#### "Movie of the Universe"

![](_page_17_Picture_9.jpeg)

#### Mapping the Milky Way

![](_page_17_Picture_11.jpeg)

Slide adapted from Ian Shipsey

![](_page_17_Picture_13.jpeg)

### LSST observing strategy

![](_page_18_Figure_1.jpeg)

#### WFD baseline strategy

#### A rolling WFD proposal

MOVIES: ROB FIRTH

### LSST and the transient universe

![](_page_19_Figure_1.jpeg)

Number of kilonovae, strongly lensed type Ia supernovae with well-measured time delays (both assuming follow-up with other telescopes) and well-measured type Ia supernovae for YIO as a function of observing strategy, ordered by percentage of visits in r-band separated by more than 15 days (in brackets).

LSST DESC WFD (ARXIV:1812.00515) AND DDF (ARXIV:1812.00516) WHITE PAPERS

![](_page_19_Picture_4.jpeg)

### **Observing strategy and photometric supernovae classification**

![](_page_20_Figure_1.jpeg)

![](_page_20_Figure_2.jpeg)

 Actively-rolling region yields ~3x cosmologically useful SNe than background region. • Strongly advocates *rolling cadence* 

- Data augmentation of spectroscopic training samples essential for classification
- Median inter-night gap should be <3.5-5 days

![](_page_20_Picture_7.jpeg)

ALVES, PEIRIS, LOCHNER, MCEWEN ET AL (2022, APJS), ALVES, PEIRIS, LOCHNER, MCEWEN ET AL (2023, APJS)

### Multimessenger observational frontier

![](_page_21_Figure_1.jpeg)

#### Expected yield of gravitational wave events with potential electromagnetic counterparts

Figure: S. Feeney

![](_page_21_Picture_5.jpeg)

### Serendipitous detections of kilonovae in LSST

![](_page_22_Figure_1.jpeg)

Can optical kilonovae detections be used to "reverse-trigger" searches for sub-threshold GW events in archival data?

![](_page_22_Picture_3.jpeg)

#### SETZER ET AL (LSST DESC, MNRAS 2019)

![](_page_22_Picture_5.jpeg)

![](_page_22_Picture_6.jpeg)

![](_page_22_Picture_7.jpeg)

![](_page_22_Picture_8.jpeg)

### Serendipitous detections of kilonovae in LSST

![](_page_23_Figure_1.jpeg)

- Self-consistent EM-GW kilonova population model designed for optical surveys

HTTPS://GITHUB.COM/CNSETZER/KILOPOP

Gaussian process Grey Opacity emulator calibrated to SuperNu radiative transfer simulations

#### SETZER ET AL (2023 MNRAS)

![](_page_23_Picture_8.jpeg)

![](_page_23_Picture_9.jpeg)

### **Planning for A+ era science with GW-EM populations**

![](_page_24_Figure_2.jpeg)

- Hierarchical Bayesian pipeline for population studies at A+ scale.
- Customised bilby wrapper + lalsimulation library + tuned polychord sampler.

#### NS-BH population study

• Accounting for selection effects crucial; understanding EM selection likely to be challenging.

FEENEY, PEIRIS, MORTLOCK, NISSANKE (2021, PHYS. REV. LETT.)

![](_page_24_Picture_9.jpeg)

### **Planning for A+ era science with GW-EM populations**

![](_page_25_Figure_2.jpeg)

#### NS-BH population study

FEENEY, PEIRIS, MORTLOCK, NISSANKE (2021, PHYS. REV. LETT.)

![](_page_25_Picture_6.jpeg)

![](_page_26_Picture_0.jpeg)

![](_page_26_Picture_1.jpeg)

European Research Council Established by the European Commission

#### **COSMICEXPLORER: Exploring the Cosmos with the Vera Rubin Observatory**

Aims: (i) Al-boosted modelling for cosmological analysis (ii) new cross-validation methods for diagnosis of systematics (iii) explainable Al to develop cosmic web as robust cosmological probe.

### VERA C. RUBIN OBSERVATORY

![](_page_26_Picture_6.jpeg)

COSMOPARTICLE, <u>WWW.PENELOPEROSECOWLEY.COM</u>

67

![](_page_27_Picture_1.jpeg)