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Bayes’ Theorem

p(data | theory) p(theory)
p(data)

* p(theory|data) =



But what should one do if?

* p(theory|data) = date

e i.e. one doesn’t know what the likelihood is



When do such situations arise?

* Lacking something...
* Knowledge about the experiment

* Mathematical knowledge
* CPU time



Options?

* Guess a potential likelihood
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Difficulties with using simulations (1)

* One’s simulations will be wrong at some level!

* One probably doesn’t have enough of them, especially in
multidimensional situations with statistics that are correlated...



Difficulties with using simulations (2)

* Depending on how one uses one’s simulations, one doesn’t
necessarily know what one’s “likelihood-free” likelihood is exactly
responding to...



GLASS (arXiv:1708.08479)

* Calculate/simulate what you can about that which you most trust and
which will inform you about the models under consideration

* This will typically be some moments of some statistics, recomputed for every
model considered...

* Use the principle of maximum entropy to “fill in the gaps” and
effectively construct the sampling distribution for that model that is
consistent with what you’ve calculated/simulated



What is the principle of maximum entropy?

e Entropy (Shannon, 1948) measures the uncertainty of a probability
distribution:

S = —fp(x) logp(x) dx

* So, if we maximize the entropy, subject to the constraints of what we
do know, we generate the broadest or most conservative distribution
consistent with those constraints (Jaynes, 2003 book)

* One shouldn’t go wrong if one uses this for inference! (One hopes...)



What GLASS is not

* Not just fitting a gaussian to the moments

* Not an Edgeworth expansion



Relations with likelihood-free approach

Likelihood-free GLASS

* Doesn’t have an explicit * Doesn’t have an explicit
likelihood likelihood

* Can simulate data realizations * Can calculate/simulate moments

* Combine these to compare data  * Combine these to compare data
to model to model



Example sampling distbtn.: p(x) = %sin(ax)
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Fitting just the first moment:
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Imagine we collect some data...
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Try some sample distributions...
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Try some approximate sample distributions...
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Glves our posteriors...
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But what about in multiple dimensions?

* When maximizing the entropy, for each trial set of lagrange
multipliers, one has to numerically evaluate multidimensional
integrals to see how all the moments turn out

e But multidimensional integrals are difficult/expensive

* To speed this up for parametrized models, the GLASS paper details
how one may replace computing all those integrals with a one-
dimensional line integral (at the cost of computing more moments...)



The key formula

* This works because one can express the gradient of the unknown
likelihood in terms of the moments:

—logpa = —(X — (X)) "((XX )" {X) a

* Here, X = (x,y, ..., x%,xy, %, ..., x3, x%y, xy?%,y3, .7



But which moments?

* Formula is derived assuming the higher moments are what one gets
in the considered maximum entropy distribution

—logpa = —(X — (X)) "((XX )" {X) a

* However, one can approximate this approximation by using the exact
higher moments computed/simulated from the underlying theory!...



Effect on our basic posterior!!...
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Next: Fit the first and second moments...
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Application to Planck CMB (arXiv:2103.14378)

* The target: inference of the optical depth to reionization, tau, via the
height of the “bump” of the low multipole EE polarization power
spectrum (also affects the TE spectrum but less significantly)

* The problem: large-scale systematic residuals in the polarization maps
caused by non-linearities in the onboard analogue-to-digital
converters, even with the special “SROLL1” processing developed to
mitigate this effect for the 2018 Legacy Release...



What did we most trust?

* From the data: “cross” power spectrum measurements, with each leg
coming from a different frequency channel

* From end-to-end simulations: Use the limited number we had (300)
to inform an analytic model for the noise between pixels in the map



Momento

e Assuming our noise model, we quickly calculate on the fly moments
of and between all cross spectrum elements (up to quartic order) of
interest for any value of tau

e Using the GLASS procedure, we effectively build a likelihood
consistent with these moments, and evaluate it at the data cross
spectrum values, for each theory model we wish to consider



Tests on simulations (EE-only)
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Max-likelihood-value comparisons
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T constraints

Data Set Likelihood 7 (EE) T (TTTEEE)

Planck 2018 C-SimLow 0.0530 + 0.0071 .
momento 0.0507 = 0.0063 0.0527 + 0.0058
pydelfi 0.0517 +£0.0070 0.0513 +0.0078

SRo112 C-SimLow 0.0582 + 0.0057 .
momento 0.0581 +0.0055 0.0604 + 0.0052

pydelfi

0.0588 + 0.0054

0.0580 + 0.0064




Since gone on to constrain r (arXiv:2207.04903)
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Figure 3. Posteriors for r (marginalised over 7) from two-dimensional low-¢
scans, using a pixel-based likelihood (pixLike) and a QCS-based likelihood
approximation scheme (momento), on NR-cleaned polarisation Planck maps.
The uncertainties from the foreground cleaning have been propagated through
to the final NCMs.



Conclusions and Further Thoughts

* Dealing with these sorts of issues in practice is tough!

* Relying solely on simulations is dangerous:
* One probably won’t have enough of them

* Even if one does, they might not be good enough in all details; one must be
prepared to “guide” one’s analysis/neural network towards only using the
things that are suitably trustable

* The GLASS procedure seems to have worked well and should be
applicable not only to further CMB analysis but also more widely



