GLASS, or How to Deal with Uncertainty in Inference

Steven Gratton, DAMTP

Kavli Institute for Cosmology Cambridge

1 June 2023

Bayes' Theorem

•
$$p(theory|data) = \frac{p(data|theory) \ p(theory)}{p(data)}$$

But what should one do if?

•
$$p(theory|data) = \frac{p(theory)}{p(data)} \frac{p(theory)}{p(data)}$$

• i.e. one doesn't know what the likelihood is

When do such situations arise?

- Lacking something...
 - Knowledge about the experiment
 - Mathematical knowledge
 - CPU time
 - ...

Options?

• Guess a potential likelihood

Options?

• Guess a potential likelihood

• Simulations

Options?

• Guess a potential likelihood

• Simulations

Difficulties with using simulations (1)

- One's simulations will be *wrong* at some level!
- One probably doesn't have enough of them, especially in multidimensional situations with statistics that are correlated...

Difficulties with using simulations (2)

 Depending on how one uses one's simulations, one doesn't necessarily know what one's "likelihood-free" likelihood is exactly responding to...

GLASS (arXiv:1708.08479)

- Calculate/simulate what you can about that which you most trust and which will inform you about the models under consideration
 - This will typically be some moments of some statistics, recomputed for every model considered...
- Use the *principle of maximum entropy* to "fill in the gaps" and effectively *construct the sampling distribution* for that model that is consistent with what you've calculated/simulated

What is the principle of maximum entropy?

• Entropy (Shannon, 1948) measures the uncertainty of a probability distribution:

$$S = -\int p(x)\log p(x)\,dx$$

- So, if we *maximize* the entropy, subject to the constraints of what we *do* know, we generate the *broadest* or *most conservative* distribution consistent with those constraints (Jaynes, 2003 book)
- One shouldn't go wrong if one uses this for inference! (One hopes...)

What GLASS is not

- *Not* just fitting a gaussian to the moments
- *Not* an Edgeworth expansion

Relations with likelihood-free approach

Likelihood-free

- Doesn't have an explicit likelihood
- Can simulate *data realizations*
- Combine these to compare data to model

GLASS

- Doesn't have an explicit likelihood
- Can *calculate*/simulate *moments*
- Combine these to compare data to model

Example sampling distbtn.: $p(x) = \frac{a}{2} \sin(ax)$

Example sampling distbtn.: $p(x) = \frac{a}{2} \sin(ax)$

Fitting just the first moment:

Imagine we collect some data...

Try some sample distributions...

Try some approximate sample distributions...

Gives our posteriors...

But what about in multiple dimensions?

- When maximizing the entropy, for each trial set of lagrange multipliers, one has to numerically evaluate multidimensional integrals to see how all the moments turn out
- But multidimensional integrals are difficult/expensive
- To speed this up for parametrized models, the GLASS paper details how one may replace computing all those integrals with a onedimensional line integral (at the cost of computing more moments...)

The key formula

 This works because one can express the gradient of the unknown likelihood in terms of the moments:

$$-\log p_{a} = -(X - \langle X \rangle)^{\mathrm{T}} \langle \langle X X^{\mathrm{T}} \rangle \rangle^{-1} \langle X \rangle_{a}$$

• Here, $X = (x, y, ..., x^2, xy, y^2, ..., x^3, x^2y, xy^2, y^3, ...)^T$

But which moments?

 Formula is derived assuming the higher moments are what one gets in the considered maximum entropy distribution

$$-\log p_{a} = -(X - \langle X \rangle)^{\mathrm{T}} \langle \langle X X^{\mathrm{T}} \rangle \rangle^{-1} \langle X \rangle_{a}$$

• However, one can *approximate this approximation* by using the *exact* higher moments computed/simulated from the underlying theory!...

Effect on our basic posterior!!...

Next: Fit the first and second moments...

Application to Planck CMB (arXiv:2103.14378)

- The target: inference of the optical depth to reionization, tau, via the height of the "bump" of the low multipole EE polarization power spectrum (also affects the TE spectrum but less significantly)
- The problem: large-scale systematic residuals in the polarization maps caused by non-linearities in the onboard analogue-to-digital converters, even with the special "SROLL1" processing developed to mitigate this effect for the 2018 Legacy Release...

What did we most trust?

- From the data: "cross" power spectrum measurements, with each leg coming from a different frequency channel
- From end-to-end simulations: Use the limited number we had (300) to *inform* an analytic model for the noise between pixels in the map

Momento

- Assuming our noise model, we quickly *calculate* on the fly moments of and between all cross spectrum elements (up to quartic order) of interest for any value of tau
- Using the GLASS procedure, we effectively build a likelihood consistent with these moments, and evaluate it at the data cross spectrum values, for each theory model we wish to consider

Tests on simulations (EE-only)

• Simulation-based, using hand-picked estimators

Momento

• Simulation-based, using NN density estimation (pyDELFI)

Max-likelihood-value comparisons

au constraints

Data Set	Likelihood	au (EE)	τ (TTTEEE)
Planck 2018	C-SimLow	0.0530 ± 0.0071	•••
	momento	0.0507 ± 0.0063	0.0527 ± 0.0058
	pydelfi	0.0517 ± 0.0070	0.0513 ± 0.0078
SRoll2	C-SimLow	0.0582 ± 0.0057	• • •
	momento	0.0581 ± 0.0055	0.0604 ± 0.0052
	pydelfi	0.0588 ± 0.0054	0.0580 ± 0.0064

Since gone on to constrain r (arXiv:2207.04903)

Figure 3. Posteriors for r (marginalised over τ) from two-dimensional low- ℓ scans, using a pixel-based likelihood (pixLike) and a QCS-based likelihood approximation scheme (momento), on NR-cleaned polarisation *Planck* maps. The uncertainties from the foreground cleaning have been propagated through to the final NCMs.

Conclusions and Further Thoughts

- Dealing with these sorts of issues in practice is tough!
- Relying solely on simulations is dangerous:
 - One probably won't have enough of them
 - Even if one does, they might not be good enough in all details; one must be prepared to "guide" one's analysis/neural network towards only using the things that are suitably trustable
- The GLASS procedure seems to have worked well and should be applicable not only to further CMB analysis but also more widely