Constraining the Astrophysics of the Early Universe using the SARAS Instrumentation

Harry T. J. Bevins

Cavendish Astrophysics, University of Cambridge

In collaboration with;
Eloy de Lera Acedo, Anastasia Fialkov, Will Handley, Saurabh Singh, Ravi Subrahmanyan and Rennan Barkana
SARAS2 Analysis and Results

The SARAS2 Data

Singh et al 2017, 2018
What are we doing differently?

Previously:
Polynomial Foregrounds

This Work:
Maximally Smooth Foregrounds (maxsmooth)
What are we doing differently?

Previously:

- Polynomial Foregrounds
- Combined Systematic/Foreground Modelling

This Work:

- Maximally Smooth Foregrounds (maxsmooth)
- Separate Systematic/Foreground Modelling
<table>
<thead>
<tr>
<th>Previously:</th>
<th>This Work:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polynomial Foregrounds</td>
<td>Maximally Smooth Foregrounds</td>
</tr>
<tr>
<td>Combined</td>
<td>(maxsmooth)</td>
</tr>
<tr>
<td>Systematic/Foreground Modelling</td>
<td>Separate Systematic/Foreground</td>
</tr>
<tr>
<td></td>
<td>Modelling</td>
</tr>
<tr>
<td>Likelihood</td>
<td>Nested Sampling (PolyChord)</td>
</tr>
<tr>
<td>Ratio/Frequentist Approach</td>
<td></td>
</tr>
</tbody>
</table>
What are we doing differently?

Previously:

- Polynomial Foregrounds
- Combined Systematic/Foreground Modelling
- Likelihood Ratio/Frequentist Approach
- 264 Physical Signal Models

This Work:

- Maximally Smooth Foregrounds (maxsmooth)
- Separate Systematic/Foreground Modelling
- Nested Sampling (PolyChord)
- Broad Study of Physical Signals (globalemu)
What are we doing differently?

<table>
<thead>
<tr>
<th>Previously:</th>
<th>This Work:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polynomial Foregrounds</td>
<td>Maximally Smooth Foregrounds (maxsmooth)</td>
</tr>
<tr>
<td>Combined Systematic/Foreground Modelling</td>
<td>Separate Systematic/Foreground Modelling</td>
</tr>
<tr>
<td>Likelihood Ratio/Frequentist Approach</td>
<td>Nested Sampling (PolyChord)</td>
</tr>
<tr>
<td>264 Physical Signal Models</td>
<td>Broad Study of Physical Signals (globalemu)</td>
</tr>
<tr>
<td>Gaussian Noise based on System Attributes</td>
<td>Gaussian Noise w/ Different σ Models</td>
</tr>
</tbody>
</table>
What are we doing differently?

Previously:

- Polynomial Foregrounds
- Combined Systematic/Foreground Modelling
- Likelihood Ratio/Frequentist Approach
- 264 Physical Signal Models
- Gaussian Noise based on System Attributes

This Work:

- Maximally Smooth Foregrounds (maxsmooth)
- Separate Systematic/Background Modelling
- Nested Sampling (PolyChord)
- Broad Study of Physical Signals (globalemu)
- Gaussian Noise w/ Different σ Models
Foreground Modelling

\[T^*_f = T_f \eta_t \]

\[\frac{d^m T^*_f}{d \nu^m} \leq 0 \quad \text{or} \quad \frac{d^m T^*_f}{d \nu^m} \geq 0 \]

\[T^*_f = \sum_{k=0}^{N-1} a_k (\nu - \nu_0)^k \]

![Graph showing the relationship between \(T_A \) and \(\nu \)]

![Graph showing the difference between \(T_A \) and \(T_f \)]
Systematic Modelling

\[T_A = (T_{21} + T_{fg})\eta_t + T_{NS} \]

\[T_{NS,2}(\nu) = \eta_t \left(\frac{\nu}{v_0} \right)^{\alpha_{sys}} A \sin \left(\frac{2\pi\nu}{P} + \phi \right) \]

\[T_{NS,1}(\nu) = \left(\frac{\nu}{v_0} \right)^{\alpha_{sys}} A \sin \left(\frac{2\pi\nu}{P} + \phi \right) \]
Noise Modelling

\[\log \mathcal{L} = \sum_i \left(-\frac{1}{2} \log(2\pi\sigma^2) - \frac{1}{2} \left(\frac{T_A(v_i) - T_M(v_i)}{\sigma} \right)^2 \right) \]

<table>
<thead>
<tr>
<th>Noise Model</th>
<th>(\sigma)</th>
<th>Prior</th>
<th>Prior Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>(A_{\sigma})</td>
<td>(A_{\sigma} = 10^{-3} - 10^{-1}) mK</td>
<td>Log Uniform</td>
</tr>
<tr>
<td>Frequency</td>
<td>(A_{\sigma})</td>
<td>(\nu^\beta_{\sigma})</td>
<td>(A_{\sigma} = 10^{-4} - 10^{-1}) mK</td>
</tr>
<tr>
<td>Damped</td>
<td>(A_{\sigma})</td>
<td>(\left(\frac{\nu}{\nu_0} \right)^{-\beta_{\sigma}})</td>
<td>(\beta_{\sigma} = 0 - 5)</td>
</tr>
<tr>
<td>Relative Weights</td>
<td>(A_{\sigma})</td>
<td>(W(v))</td>
<td>(A_{\sigma} = 10^{-2} - 10^{-1}) mK</td>
</tr>
</tbody>
</table>

Table 2. The tested frequency dependent and independent standard deviation models for the assumed Gaussian noise in the SARAS2 data. In the frequency damped noise model \(\nu_0 \) is the central frequency in the band. The origin of the relative weights, \(W(v) \), is discussed in section 3.1.
Signal Modelling

Models from Reis et al. 2020 and 2021
Results

Systematic Noise Signal

Fit Number

Efficiency - Constant
Damped - Constant
Efficiency - Freq. Damped
Damped - Freq. Damped
Efficiency - Relative Weight
Damped - Relative Weight

log(\(Z\))
\[P_{\text{combined}}(\theta|D, M) = \sum_i w_i P_i(\theta|D, M) \quad w_i = \frac{Z_i}{\sum_j Z_j} \]
Results – Radio Galaxy Excess Background

![Graph showing distribution of radio galaxy excess background with axes labeled as follows: log(f_c), log(V_c), log(f_X), \tau, log(f_{radio}).]
Conclusions

- SARAS2 has provided constraints on the magnitude of any excess radio background from high redshift radio galaxies above the CMB.

- We have identified a systematic in the SARAS2 data (probably ground emission).

- The workflow used here could be applied to REACH data...
SARAS2 Foreground Modelling

![Graph showing the RMS values at different redshifts and frequencies.]

- **RMS = 197.54 mK**
- **RMS = 19.76 mK**
- **RMS = 24.90 mK**
- **RMS = 11.71 mK**
“Standard” Signals

\[
\begin{align*}
\log(V_c) &\ -2.5 \quad 0.0 \quad 2.5 \\
\log(f_X) &\ -2.5 \quad 0.0 \quad 2.5 \\
\tau &\ -2 \quad -1 \\
E_{\text{min}} &\ 1 \quad 2
\end{align*}
\]
Results – In the Context of HERA

\[
\begin{align*}
\log(V_c) & \approx -2.5 ^{0.0} \quad 2.5 \\
\log(f_X) & \approx 0.04 ^{0.06} \quad 0.050 ^{0.075} \\
\tau & \approx 0.0 ^{2.5} \quad 5.0 \\
\log(f_{\text{radio}}) & \approx 1.0 ^{1.5} \quad 4.0
\end{align*}
\]

*The HERA Collaboration 2022