Reionization constraints from HERA 21cm power spectrum limits

Based on work with the HERA Collaboration & Theory team

HERA Phase I Limits on the Cosmic 21-cm Signal: Constraints on Astrophysics and Cosmology During the Epoch of Reionization [arXiv 2108.07282]

Stefan Heimersheim

3rd year PhD student with Anastasia Fialkov (IoA)

Other research: Reionization constraints with Fast Radio Bursts

The HERA Telescope

HERA telescope in Karoo desert, South Africa Image credit: HERA Partnership

39 antennas, 18 nights of observation, separated by LST (fields), drift scan Figure from HERA papers (arXiv 2108.02263, 2108.07282)

21-cm Cosmology Cambridge March 2022

21cm power spectrum

(Figure: HERA Collaboration 2021a)

Figure: HERA (http://reionization.org/science/public-data-release-1/)

21-cm Cosmology Cambridge March 2022

The 21cm signal EoR window

21-cm Cosmology Cambridge March 2022

What do we mean by an "upper limit"?

$k \\ h \ \mathrm{Mpc}^{-1}$	Δ^2 (mK) ²	1σ (mK) ²	$\Delta_{\rm UL}^2$ (mK) ²
0.128	$(29.17)^2$	$(17.39)^2$	$(38.16)^2$
0.192	$(14.55)^2$	$(19.17)^2$	$(30.76)^2$

Measurement (14² ± 19² mK²) = Cosmological + Systematics

→ Cosmological signal anywhere between 0 and measurement

21-cm Cosmology Cambridge March 2022

Seminumerical codes (see Thomas' talk)

Numerical simulations (e.g. Fialkov et al.)

- Evolve density field & identify star-forming halos (parameterized by M_{min} or V_c)
- Model emission of UV, X-Ray, Radio, LyA etc.
 - (parameterized by τ , f_x , f_r , f_*)

Parameters

 $(V_c \tau f_* f_X f_r)$

 Compute 21cm brightnes temperature fields and derive power spectra

21-cm Cosmology Cambridge March 2022

Few hours

Emulator for semi-numerical simulations

Neural network

- Use to "emulate" simulation. i.e. effectively interpolate between existing simulations
- 10,000 simulations in 5D parameter space
- Uncertainty ca. 20% of power spectrum

21-cm Cosmology Cambridge March 2022

21cm signal & extra radio background

- Homogeneous synchrotron background, strong at high z (see also Shikhar's PBH talk)
- Radio emission from galaxies (inhomogeneous, scaling with SFR)

21-cm Cosmology Cambridge March 2022

Extra Radio Background in 21cm Power Spectra

Figure from Reis et al. 2021

21-cm Cosmology Cambridge March 2022

Stefan Heimersheim sh2061@cam.ac<u>.uk</u>

9

Intuitive interpretation of HERA limits

(lead by Julian B. Muñoz)

10

21-cm Cosmology Cambridge March 2022

Intuitive interpretation of HERA limits (lead by Julian B. Muñoz)

If 21cm PS traces matter power spectrum ("bias approach")

Comparison to claimed EDGES detection

21-cm Cosmology Cambridge March 2022

Stefan Heimersheim sh2061@cam.ac.uk

25

50

30

30

12

Constraints from HERA limits (alone) on models

Rule out cold IGM together with strong radio background

- Preference for high f_x and low f_r, models with both, low f_x and high f_r are excluded (f_x<25% today's X-ray efficiency, f_r>400 times today's radio emissivity)
- Similar constraints: Low *f_X* with *synchrotron radio background* > 5×CMB (large, but lower than ARCADE 2 limits, 50×CMB, Fixsen et al. 2011) ruled out

Constraints on Extra Radio Background models

Complementary constraints to LWA/ARCADE2 & Chandra

High contrast Large Signal

Excluded models correspond to those with high radio background and relativey low gas temperature

(T_{rad} / T_K > 10 excluded)

Standard models, no additional radio background

(lead by Yuxiang Qin, with Andrei Mesinger and Bradley Greig)

- HERA constraints slightly improve constraints over other constraints (UV LVs, QSOs, CMB)
- Especially on the X-ray luminosity (heating)
 → Rule out too-cold IGM

21-cm Cosmology Cambridge March 2022

Summary

• 21cm cosmology will probe a large part of the observable Universe

- Power spectrum measurements by HERA (14.55mK)² +/- (19.17mK)² at z=7.93, k=0.2 h/Mpc
- Strongest upper limits on 21cm power spectrum
- Constrain IGM & radiation temperature
 - Require heating of IGM by redshift 8
 - Ratio $T_{rad}/T_{gas} < 10$

16

- Constrain astrophysical models
 - Rule out some parts of astrophysical parameter space (those leading to high radio / less heating)

21-cm Cosmology Cambridge March 2022