Cosmology with Lyman-α forest

Vid Iršič

@ KICC

Kavli Science Day

Sep 30, 2021
Lyman-α forest? $z=4.0$

Scattering of the electron: $n=1 \rightarrow n=2$
Hydrogen transition (Lyman-α)

Absorption in Quasar spectra along the line of sight
Current Status

Lyman-α forest auto-correlation BAO

Amplitude of matter clustering from Ly-α

σ_8

100 Mpc/h

10 Mpc/h

1 Mpc/h

100 kpc/h
Large-scales (> 10 Mpc/h)

BAO → Full-Shape

Expansion history
Amplitude (σ_8) and growth ($f\sigma_8$)

DESI survey
Roger de Belsunce, VI, George Efstathiou

du Mas de Bourboux et al. 2020 (eBOSS)

Challenges:
- Quasar Continuum
- Correlated noise
- Metal absorbers

Clustering amplitude at the peak of SF?

Font-Ribera et al. 2017 (BOSS mock data)
Intermediate-scales (1 – 10 Mpc/h)

Amplitude of matter clustering from Ly-α

Amplitude \(P_L(k_p, z_p) \)
and shape \(d \ln P_L / d \ln k(k_p, z_p) \)
of matter clustering

Possible issues:
• High-column density
• UVB fluctuations

Cosmology \(\leftrightarrow \) IGM physics

Determine sum of neutrino masses?

Matteo Esposito, VI, Matteo Viel
Intermediate-scales (1 – 10 Mpc/h)

Amplitude – $P_L(k_p, z_p)$
and shape – $d \ln P_L / d \ln k(k_p, z_p)$
of matter clustering

Possible issues:
- High-column density
- UVB fluctuations

Cosmology \leftrightarrow IGM physics

Matteo Esposito, VI, Matteo Viel (in prep)
Intermediate-scales (1 – 10 Mpc/h)

Amplitude – $P_L(k_p, z_p)$
and shape – $d \ln P_L / d \ln k(k_p, z_p)$
of matter clustering

Possible issues:
• High-column density
• UVB fluctuations

Cosmology \leftrightarrow IGM physics

Margherita Molaro, VI, James Bolton (astro-ph/2109.06897)
Intermediate-scales ($1 - 10$ Mpc/h)

Amplitude $- P_L(k_p, z_p)$
and shape $- d \ln P_L / d \ln k(k_p, z_p)$
of matter clustering

Possible issues:
- High-column density
- UVB fluctuations

Cosmology \leftrightarrow IGM physics
- Higher order Lyman series
- Higher order statistics

Bayu Wilson, VI, Matthew McQuinn (astro-ph/2106.04837)
Small-scales ($< 1 \text{ Mpc/h}$)

Testing Dark Matter models

- Relative suppression of small-scale clustering
- Robust constraints for variety of models

![Graph showing small-scale clustering analysis](image-url)
Can we rule out large ranges in DM particle mass?

Motivation: non-resonant sterile neutrino (3.5 keV), excluding ultra-light axions with $m_a > 10^{-14} \text{ eV}$

Can we distinguish between DM models?

Motivation: information on production mechanism

Can we rule out large ranges in DM particle mass?

Motivation: non-resonant sterile neutrino (3.5 keV), excluding ultra-light axions with $m_a > 10^{-14} \text{ eV}$

Can we distinguish between DM models?

Motivation: information on production mechanism
Small-scales (< 1 Mpc/h): Link between Cosmology & Galaxies

Estimated power subtracts metals: $P_{\alpha\alpha} = P_F - P_m$

Metal power P_m measured red-side of Lyα emission

Wilson, Vl+21 (astro-ph/2106.04837)

Correlations of metal doublets

Karacayli, Vl+21 (astro-ph/2108.10870)
Conclusions

• Lyman-α forest as a high-z LSS tracer

• A unique probe of the IGM (redshift range, small scales)

• Large-scales (> 10 Mpc/h): BAO + Full-Shape(?)

• Intermediate-scales (1 – 10 Mpc/h): Amplitude/Slope of matter clustering

• Small-scales (< 1 Mpc/h): Robust constraints on DM models

• With increasing statistical power of the data → access to CGM