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Part 1: The BayeSN Model



Motivation



Why worry about dust?

● Correctly handling dust (and SN Ia colour–luminosity correlations more 
generally) is key to correctly estimating SN Ia distances

● Observed correlation (“mass step”) between SN Ia magnitudes and host mass 
→ dust would be one explanation

● If dust correlates with host mass, could create z-dependent biases if not 
accounted for

● If intrinsic effect misattributed to dust, could lead to bias



The BayeSN Model

Mandel (2020)
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Why include intrinsic colour variation?



Why include intrinsic variation?



Why use Optical + NIR?

Thorp & 
Mandel (2022)



Advantages of BayeSN

● Hierarchical Bayesian Model
○ Allows for joint inference of global and individual SN properties
○ Better estimation of global Rv distribution using hierarchical approach than just taking 

mean/standard deviation of individual estimates
○ Can constrain/marginalise over intrinsic SN colour variation

● Model extends into NIR wavelengths, allowing for better constraint of host 
galaxy dust 

● Improved Hubble diagram scatter (~20-30% better than SALT2 and SNooPy)



Disadvantages of BayeSN

● Lots of parameters!



Part 2: Scaling to Next Generation Surveys



Scaling BayeSN

Problem: 

Scaling BayeSN for next generation data sets without compromising functionality
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Scaling BayeSN for next generation data sets without compromising functionality

Solution:



Jax and Numpyro

Jax 

● Python package very similar to numpy, but includes JIT compilation at 
runtime for any device including GPUs

Numpyro

● Probabilistic programming package for Python built on Jax 

Vectorized posterior evaluation + GPUs = Fast Bayesian inference



Examples

Mandel+20:

● Trained on 79 BVriYJH light curves compiled in Avelino+19
● Approximately 4600 parameters
● Previous training ~5 days → now ~20 minutes

Thorp+21:

● Trained on 157 griz light curves from Foundation DR1
● Approximately 4600 parameters
● Previous training ~1 day → now ~10 minutes



Examples

1000 simulated Foundation-like SNe:

● Training (conditioning global parameters on data)
○ 27,500 parameters
○ 45 mins

● Fitting (inference of supernova properties)
○ 27,000 parameters
○ 15 mins



Applications to Next Generation Surveys

● Previously, training and fitting on data-sets > 10,000 SNe would have been 
computationally unfeasible

● The use of numpyro + GPUs makes this achievable in relatively short 
timescales

● We are able to scale Bayesian inference approaches to LSST-size data sets



LSST



Ongoing Work

Improving the model:

● Replacing HMC with variational inference (Ana-Sofia Uzsoy)
○ Rather than trying to sample from posterior, assume its shape and match to the true posterior 

- turns Bayesian inference into an optimisation problem

● Using Gaussian Markov random fields and Integrated Nested Laplace 
Approximation (Collin Politsch)

○ Reduces intrinsic colour variation to far fewer parameters while maintaining complexity, 
alternative approach for fitting

● Improving and incorporating spectroscopy (Ben Boyd)
○ Training on spectra and using new spectroscopic templates

● Implementing BayeSN within SNANA (Stephen Thorp)
○ Will allow for full BayeSN cosmological analysis



Ongoing Work

Applying the model:

● A BayeSN distance ladder (Suhail Dhawan)
● Hierarchical analysis of SN siblings (Sam Ward)
● Analysis of dust and intrinsic colour distributions (Erin Hayes)
● Training BayeSN using YSE DR1 (Matt Grayling)
● Analysis of environmental dependence on intrinsic colour (Matt Grayling + 

Suhail Dhawan)



Conclusions

● BayeSN is a powerful Bayesian hierarchical model for standardising type Ia 
supernovae

● LSST will provide a fantastic sample of ugrizy light curves and allow for good 
constraint of host galaxy dust

● Our work on scaling BayeSN means that it can be applied to next generation 
surveys

● Lots of ongoing work to improve and apply BayeSN


