SN Ia Siblings & Rubin

SNe la & Systematics

SNe la are Standardisable Candles

Luminosity Distances Constrain Cosmology

Goal is to improve SN Ia standardisation for accurate and precise constraints on e.g. w, H0, $f\sigma_8$ etc.

(Scolnic+18)

What systematics now dominate?

Step in Global Property: Host Galaxy Stellar Mass

Step in *Local Property*: Local specific Star Formation Rate

(Jones+22, Rigault+20)

Why are SN Ia Siblings Useful?

Why are Supernova Siblings Important?

SN Siblings are those that occur in the same host galaxy

Advantages:Common DistanceCommon Host-Galaxy Properties (Type, Mass...)Common Peculiar Velocity, Redshift

Why are Supernova Siblings Important?

SN Siblings are those that occur in the same host galaxy

Advantages:Common DistanceCommon Host-Galaxy Properties (Type, Mass...)Common Peculiar Velocity, Redshift

Variations between siblings: intrinsic SED, dust, local host galaxy properties, etc.

Total Intrinsic Scatter: σ_0

Scenario A. $\sigma_{Rel} \ll \sigma_0$: Implies common properties dominate σ_0

Scenario B. $\sigma_{Rel} \approx \sigma_0$: Implies variations between siblings dominates σ_0

Scolnic et al. (2020) with SALT2

We show at 2.8σ significance that at least 1/2 of the intrinsic scatter of SNe Ia distance modulus residuals is not from common host properties.

Burns et al. (2020) with SNooPy

 $\sigma_{Rel} \ll \sigma_0$

 Table 4

 Intrinsic Dispersions in the Sibling Distances

Subsample	$\sigma_{ m SN}$	$N_{\rm pair}$	Ngal
All pairs	0.14(02)	34	15
No Swift SNe	0.07(03)	28	12
$s_{\rm BV} > 0.6$	0.12(02)	25	12
$s_{\rm BV} > 0.6$ and no Swift SNe	<0.03 (95% conf.)	21	11

Correlation of siblings affects uncertainty on distance estimate

Hierarchically Modelling Siblings (Ward et al. 2023)

Young Supernova Experiment (YSE)

(Jones+21, Aleo+22)

Young Supernova Experiment (YSE)

(Jones+21, Aleo+22)

SN la Model: BayeSN

Comparison of Individual Distance Estimates

$\sigma_{ m Rel} ext{-Posterior (mag)} b$			
$\sigma_{ m Rel} \sim \mathcal{U}(0, 0.1)$	$\sigma_{ m Rel} \sim \mathcal{U}(0, 0.15)$	$\sigma_{ m Rel} \sim \mathcal{U}(0, 1.0)$	
< 0.056 (0.091)	$< 0.073 \ (0.133)$	$< 0.130 \ (0.516)$	
$< 0.062 \ (0.094)$	$< 0.086 \ (0.138)$	$< 0.209 \ (0.663)$	

Comparison of Individual Distance Estimates

Correlation of siblings affects uncertainty on distance estimate

BayeSN Individual & Common-µ **Fits**

BayeSN Individual & Common- μ Fits

Siblings fitted simultaneously with Cepheid distance and Hubble flow SNe Ia, whilst marginalising over σ_{Rel} and siblings' dust parameters

 σ_{Rel} -marginalisation adds $\approx 1.5\%$ to H_0 uncertainty

Prospects with LSST SN Ia Siblings?

What can we do with more siblings?

With more siblings we can:

- Tightly constrain σ_{Rel} and compare against σ_0
- Build model to explain how siblings' properties correlates with σ_{Rel}

Scolnic+20 estimate **~800 galaxies** with SN Ia sibling pairs by end of 10-year LSST Additionally, there will be siblings pairs by combining **archival non-LSST SNe + LSST SNe** Largest sample to date **158 galaxies with 327 SNe Ia** (Kelsey 2023)

(Foundation DR1 – Foley+18; Jones+19)

 σ_{Rel} constraints from fitting Foundation DR1 (Foley+18) sample (griz LCs, $\Delta t \sim 7 - 11$ days)

 \approx 100 Galaxies yields \pm 0.01 mag 68% uncertainty on σ_{Rel}

 σ_{Rel} constraints from fitting LSST-WFD (Locken+23) sample (*grizy* LCs, $\Delta t \sim 5 - 25$ days)

>800 Galaxies yields ± 0.01 mag 68% uncertainty on σ_{Rel}

Relative intrinsic scatter, σ_{Rel} :

• σ_{Rel} indicates whether common properties or within-galaxy variations dominate σ_0 in the Hubble diagram

• σ_{Rel} posterior can be computed from individual siblings distances – wide posterior for small number of galaxies

• σ_{Rel} affects joint siblings distance estimates – σ_{Rel} should be marginalised over

• σ_{Rel} also affects dust parameter estimates (in joint hierarchical fits)

 $\bullet\sigma_{Rel}$ thus affects cosmological parameters, and science conclusions about siblings-host correlations

Many LSST siblings, require high-cadence photometry, focus on archival SN Ia galaxies

Multi-Galaxy Siblings Analysis

BayeSN Population and Siblings (A_V, θ) Distribution

How many siblings do we need?

Method:

Simulate distances with true σ_{Rel}

Analytic posterior on σ_{Rel} , extract summary statistics

How do constraints depend on:

- Number of Siblings Galaxies
- SN Photometry (time sampling, NIR LCs)