Probing the epoch of reionization with high redshift quasars from VISTA and LSST

Richard McMahon (Cambridge), Raphael Shirley (Southampton), Manda Banerji (Southampton), Katherine Kauma, Paul Hewett, Matthew Temple, Sophie Reed, Estelle Pons

Also https://github.com/richardgmcmahon/count_quasars forked from https://github.com/dhroth/count_quasars
Site choice:

Cerro Paranal (ESO) or Cerro Pachon (Gemini)
VISTA primary mirror delivered to VISTA telescope; April 2008

The VISTA Mirror

4.1 m diameter f/1 primary

ESO Press Photo 10c/08 (16 April 2008)

This image is copyright © ESO. It may be used in connection with an ESO press release and may be used by the press on the condition that the source is clearly indicated in the caption.
Quasars and AGN with z>6.5

• Scientific motivation and background

• Foreground challenges and uncertainties in forecasts

• Need for BOTH LSST and near infra red imaging data (VISTA, Euclid) at both the catalogue and the image pixel level

• How we are getting ready (Raphael Shirley talk)
Scientific Motivation

- Epoch of Recombination: $z=1100$
- First stars “PopIII”: $z=30-20$
- Epoch of Reionization: $z=15-6$
- Epoch of peak galaxy and quasar activity: $z=2$

Cambridge 2023 March 27
Where are the Baryons?

90% of Baryons are a metal enriched in ionized Intergalactic or Circumgalactic medium, Shull+2013; Fukugita+1998

How do we detect them directly?
Redshift $z = 0.158$
$m(V) = 12.5$ [Vega, AB]
$m(K) = 9.8, 10.9$ [Vega, AB]

20th brightest source in 3CR radio catalogue
10 million stars are brighter in optical

Absolute Magnitude: $B = -27.5$
Black hole mass: 1.5×10^9 Solar Masses

20" (500 kpc)

ACS • HRC

Quasar 3C 273
Hubble Space Telescope • ACS HRC Coronagraph
Evolution of HI: 3C273 spectrum from HST/FOC $z=0$; $z=3.6$ QSO HIRES/Keck spectrum from M. Rauch (both are radio selected)
Heavy elements and HI neutral fraction

Figure 1. A high signal-to-noise spectrum of the quasar ULAS J1319+0959 at $z = 6.13$ from Becker et al. (2015), obtained with the X-Shooter spectrograph on the Very Large Telescope (VLT). The spectrum has been rebinned to 1.5 Å per pixel for presentation purposes.

The HI Neutral fraction of the IGM can be inferred in various ways.
High-z Quasars (HzQ) selection challenges

• Dropout: HzQ, flux blueward of the Lyα (1216 Angstroms) emission-line absorbed by neutral Hydrogen

• At $z = 6.5$, $\lambda_{\text{obs, Ly}\alpha} \sim 0.9\mu m$

• HzQ are rare

• Candidates are contaminated by artefacts (image and catalogue junk) and

• Gaussian scatter of foreground LT dwarfs (similar optical colours to HzQ but much more abundant)

• Morphologically misclassified foreground galaxies
Nuisance foreground objects: L and T Galactic stars
(20 Jupiter masses; interesting for other reasons)

- Very red spectrum rising in optical;
- Redder than M-star in optical

- Near IR Broad band colours are ‘blue’
- Similar to A star photometrically in JHK
- Spectrum is heavily absorbed in near IR
- Spectrum similar to Jupiter; water and Methane

Spectra from Stern et al, 2007
QSO model: E(B-V)=0.0, z=6.5

QSO model: E(B-V)=0.0, z=7.5
Visible and Infrared Survey Telescope for Astronomy (VISTA)

VISTA summary

- **Location**: ESO, Paranal, Chile
- **Aperture**: 4.2 m diameter f/1 primary
- **Field of view**: 1.65 degree diameter
- **Instrumentation**: VIRCAM — 8k x 8k mosaic near-infrared camera
- **Detectors**: 16 x 2k x 2k pixel (Raytheon VIRGO HgCdTe); 67 megapixels
- **Wavelength range**: 0.84–2.5 microns
- **Pixel scale**: 0.34 arcseconds/pixel

- **Surveys started**: March 2010
 Science Verification Oct 2009– Feb 2010

Sparse filled mosaic 90% x 42% spacing
VISTA Survey Coverage

Observing dates: 20091015 - 20220801
Cambridge Astronomy Survey Unit
VISTA Large (>100deg²) Area ESO Public Surveys

<table>
<thead>
<tr>
<th>Survey</th>
<th>Area (deg²)</th>
<th>5σ point source depth (AB mag)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Z</td>
</tr>
<tr>
<td>VISTA Hemisphere Survey</td>
<td>18,000</td>
<td></td>
</tr>
<tr>
<td>1. VHS-DES</td>
<td>4500</td>
<td>24.7</td>
</tr>
<tr>
<td></td>
<td>60 secs per band</td>
<td></td>
</tr>
<tr>
<td>2. VHS ATLAS</td>
<td>5000</td>
<td>20.9</td>
</tr>
<tr>
<td></td>
<td>60 secs per band</td>
<td></td>
</tr>
<tr>
<td>3. VHS-GPS (5° <</td>
<td>b</td>
<td>< 30°)</td>
</tr>
<tr>
<td></td>
<td>60 secs per band</td>
<td></td>
</tr>
<tr>
<td>VIKING</td>
<td>1,500</td>
<td>23.1</td>
</tr>
<tr>
<td>VVV (Galactic Centre)</td>
<td>520</td>
<td>22.4</td>
</tr>
<tr>
<td>VMC (Magellanic Clouds)</td>
<td>184</td>
<td>23.3</td>
</tr>
</tbody>
</table>

VHS time allocation: initially 500+ nights on VISTA over 7 years: started 2010; finished 2022
LSST forecasts

• LSST Commissioning Phase Mini-Survey
• LSST Year 1 of 10 observations
Forecast for LSST Year 1 (15,000 deg2)

- LSST γ Y1 5σ depth (23.64mag)
 - $N(z>6.0) = 2800$
 - $N(z>6.5) = 700$
 - $N(z>7.0) = 55$
 - $N(z>7.5) = 0$

- VISTA J VHS–ATLAS 5σ depth (20.70mag)
 - $N(z>6.0) = 136$
 - $N(z>6.5) = 40$
 - $N(z>7.0) = 12$
 - $N(z>7.5) = 3$
VISTA: VEILS + VIDEO: 20deg2
centred on 3 LSST Deep Drilling Fields
Banerji, Hoenig, Sullivan, Jarvis +

\begin{itemize}
 \item N(z>6.0) = 13
 \item N(z>6.5) = 3.9
 \item N(z>7.0) = 1.0
 \item N(z>7.5) = 0.2
\end{itemize}
Summary

• LSST will transform the study of the high redshift Universe as traced by quasars in the redshift range 6.0 to 7.5
 • Near IR photometry from VISTA will be essential for efficient rejection of foreground low mass galactic stars

• Pixel level combination of LSST and near IR data from VISTA will be essential at z > 6.5 quasar selection and ‘reliable’ photometric classification prior to spectroscopy to confirm classification
 • Spectroscopic follow-up of only a subset possible
 • LSST from Year 2 onwards may help by adding variability since luminous AGN vary by 0.1mags rms on “rest-frame year” timescale
 • LSST limits on lack of proper motion could be a useful (Gaia not useful since z>6 quasars are not detectable in Gaia wavebands)

• Euclid will be deeper in near IR flux but expectations for z>8 are low in medium term since footprint growth rate is 3000 deg² per year.
EXTRA SLIDES
Example Selection Method:

- classical colour based preselection on DES + VISTA catalogues;
 - J band limit for z>6.5 sample selection;
 - J < 21.0
- Probabilistic SED based classification with listdriven forced flux based photometry on DES (g, r, i) and WISE (W1, W2) to go below catalogue limits (Reed, et al. 2017)