Alert brokers, discovery and classification in the LSST era

S. J. Smartt (Oxford)

R. D. Williams, K. W. Smith, G. Francis D. R. Young, A.

Lawrence

Lasair is funded by UK STFC grants ST/X001334/1 and ST/X001253/1

lasair.lsst.ac.uk

Legacy Survey of Space and Time (LSST)

Starting points:

https://www.lsst.org

https://www.lsst.ac.uk

https://lsst-uk.atlassian.net

LSST:UK consortium

Stephen Smartt (University of Oxford and Queen's University Belfast)

Project Lead: Bob Mann (University of Edinburgh)

Slides reviewed and last updated: 8 February 2023 https://lsst-uk.atlassian.net

Construction progress: as of Feb 2023

Image Credit: Rubin Obs.

Rubin schedule

Projected science operation start January 2025

Monthly updates (including diagram updates): https://www.lsst.org/about/project-status

When will science data arrive?

Two useful Rubin documents which are continually updated:

Release Scenarios for Rubin - LSST Commissioning and Survey data Marshall et al. RDO-11

https://docushare.lsstcorp.org/docushare/dsweb/Get/RDO-11

Rubin Observatory Plans for an Early Science Program
Guy et al. RTN-11

https://rtn-011.lsst.io/

Buy et al. Table 1

Rubin Early Data Release Scenario	Jun 2021	Jun 2022	Jun 2023 - Sep 2023	Sep 2024 - Oct 2024	May 2025 - Aug 2025	Nov 2025 - Apr 2026	Nov 2026 - Apr 2027	Nov 2027 - Feb 2028	Nov 2028 - Feb 2029
	DP0.1	DP0.2	DP0.3	DP1	DP2	DR1	DR2	DR3	DR4
Data Product	DC2 Simulated Sky Survey	Reprocessed DC2 Survey	Solar System PPDB Simulation	First Light LSSTCam Data	LSSTCam Science Validation Data	LSST First 6 Months Data	LSST Year 1 Data	LSST Year 2 Data	LSST Year 3 Data
Raw images	~	\sim		~	\sim	\sim	\leq	$\overline{\mathbf{v}}$	\sim
DRP Processed Visit Images and Visit Catalogs	\checkmark	\sim			\sim				
DRP Coadded Images	✓	\sim							
DRP Object and ForcedSource Catalogs		\sim							
DRP Difference Images and DIASources		\sim			V	✓			
DRP ForcedSource Catalogs including DIA outputs		\sim							$\overline{\mathbf{v}}$
PP Processed Visit Images									
PP Difference Images									
PP Catalogs (DIASources, DIAObjects, DIAForcedSources)									
PP SSP Catalogs			\checkmark						
DRP SSP Catalogs					П				

Where to point and when?

- Rubin Observatory
 - 8m telescope (6.5 m clear aperture) on Cerro Pachon, Chile
 - 3.5 gigapixel camera, impressive detector quality
 - Real time alert stream and multi-colour deep image of the sky

Science Requirements

- 18,000 square degrees observed 825 times over 10 yrs
- Multi-Colour deep image of southern sky
- Parallax and proper motion precision requirements
- Rapid revisit timescale requirements

Cadence problem in a nutshell:

Can do all southern, visible sky once per night: but we need 2 visits and we have 6 filters

Average return time (in same filter) 6 would be 2 x 6 = 12 days

Multi-colour and deep

Figure 4. The LSST bandpasses. The vertical axis shows the total throughput. The computation includes the atmospheric transmission (assuming an airmass of 1.2, dotted line), optics, and the detector sensitivity.

	5σ single visit	10 yr depth
u	23.9	26.1
g	25.0	27.4
r	24.7	27.5
i	24.0	26.8
Z	23.3	26.1
у	22.1	24.9

2 example strategies

Baseline

Exgal sky and rolling

Number of observations after 10 years (DDF visits removed)

Year 3.5-4.5

From, Peter Yoachim's talk August 2020 at Project & Community Workshop 2020: https://project.lsst.org/meetings/rubin2020/agenda/session/community-evaluation-rubin-survey-strategies

LSST Observing sequence and cadence

- Observe a camera footprint with 2x15 second exposures, taken back-to-back (they are called "snaps". They will be co-added automatically to make a 30 second image, allowing cosmic ray mitigation
- Come back on the same night, about 30mins later, and observe <u>exactly</u> the same footprint.
 Still to be decided if the 2nd visit will be in the same filter as the 1st or a suitable different pair (e.g. g+r, i+z u and y would not be paired of course)

When does LSST revisit this footprint again?

Figure 2. Distribution of median internight visit gaps (the time elapsed between visits to the same field in different nights) at a given location in the sky for two simulated LSST OpSim strategies: baseline nexp2 v1.7.1 10yrs (left) and rolling nm scale0.90 nslice2 fpw0.9 nrw1.0v1.7 10yrs

LSST Alerts - Key numbers

Goal is 60 seconds to send an alert. Every 60 seconds the following tables give an idea of number of alerts and their types that will be released.

Alert numbers : per visit

Туре	Extragalactic (80% of sky)	Galactic (20% of sky)
Movers	3000	3000
Stars	1800	30000
AGN	70	70
Supernovae and extragalactic transients	200	200

	5σ single visit	10 yr depth
u	23.9	26.1
g	25.0	27.4
r	24.7	27.5
i	24.0	26.8
Z	23.3	26.1
у	22.1	24.9

The broker landscape

Lasair https://lasair.lsst.ac.uk

What do brokers do?

Lasair scalable architecture

ML classification

Lochner et al. 2016

Muthukrishna et al. 2019

Potential for major advances

- Improved ML methods
- Better training, with data and models
- Large and expert community rapidly changing field

Lasair and lightcurve fitting

$$f(t) = A \frac{e^{-(t-t_0)/\tau_{fall}}}{1 + e^{-(t-t_0)/\tau_{rise}}} + B$$

Lasair focus

- Mover/star/galaxy separations (galaxy offset or nuclear transient or AGN)
- Provide trustworthy measurements and values
- Host galaxy match and redshift
- Trust in the data values
- User decides
- Can work with Lasair team on "Annotator"

Lasair watchlists

Lasair Watchmaps

Landscape now to 2030

Discussion points

- 1. Are we taking the right approach with Lasair?
- 2. Can we facilitate your science, and what extra can we do?
- 3. A UK strategy for time domain real-time data federation, classification and curation

Roy Willams Smith

Ken

Dave Young

Gareth Francis

All very helpful!

Finally the last word the latest on alerts from LSST 7th Feb 2023

The LSST Survey start: 4-7 months after System First Light. Some "near-live" alerts are planned around the time of the LSST Survey start, and then alert production is planned to increase smoothly to "live" during the early months of the LSST Survey, covering more regions over time as the static-sky templates are built up.

Monthly updates (including diagram updates): https://www.lsst.org/about/project-status
https://lsst-uk.atlassian.net

Fin

