THE COSMIC GRAPH: where is the INFORMATION IN LARGE-SCALE STRUCTURE ?

KICC FOCUS MEETING ON ASTROSTATISTICS & ASTRO-ML, CAMBRIDGE JUNE 1-2, 2023

T. LUCAS MAKINEN, IMPERIAL COLLEGE LONDON

The Cosmic Graph: Optimal Information Extraction from Large-Scale Structure using Catalogues

T. Lucas Mäkinen

arXiv:2207.05202, arXiv:2107.07405 KICC Focus Meeting on Astrostatistics and Astro-ML

With Tom Charnock (IAP), Ben Wandelt (IAP), and Pablo Lemos (U. Sussex), Alan Heavens & Natalia Porqueres (Imperial), & Ben Wandelt (IAP)

01 Why Compression ?

 $1 \text{ Mpc} = 3.2 \times 10^6 \text{ light years}$

Cosmological Inference from large-scale structure

Inverse problem: What is the probability of a given parameter, θ , being a good descriptor of observed large scale structure ?

ILI: Implicit Likelihood Inference

Thanks to Ben for the diagram !

Cosmology: an Optimization Problem

Objective: constraints on cosmological parameters

Path: find statistic that captures the most relevant cosmological information

Question: Can we *learn* this path by minimizing (or maximizing) the objective ?

density field

+ noise + survey effects ?

neural compression to maximally-informative summaries

The Fisher Information

Defining the Optimization Objective

02

$$\mathbf{F}_{\alpha\beta} = - \left\langle \frac{\partial^2 \ln \mathcal{L}}{\partial \theta_{\alpha} \partial \theta_{\beta}} \right\rangle_{\theta = \theta_{\text{fid}}}$$
Think of this as the *curvature* of the log-likelihood, ln \mathcal{L} at θ_{fid}

Cramér-Rao bound:

$$\langle (\theta_{\alpha} - \langle \theta_{\alpha} \rangle) (\theta_{\beta} - \langle \theta_{\beta} \rangle) \rangle \geq \mathbf{F}_{\alpha\beta}^{-1}$$

Gives us a lower bound for the (average) variance of a parameter estimate

Example: draw n_d independent datapoints from a normal distribution, $\mathcal{N}(\mu, \sigma)$. Then the likelihood is:

$$\mathcal{L}(\mathbf{d}|\mu,\sigma) = \prod_{i=1}^{n_d} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2} \frac{(d_i - \mu)^2}{\sigma^2}\right)$$

And the Fisher matrix is:

$$F = -\left(\frac{\partial^2 \ln \mathcal{L}}{\partial \theta_{\alpha} \partial \theta_{\beta}}\right)_{\theta_{\text{fid}}} = \left(\begin{array}{cc} -n_d \\ \sigma^2 & 0 \\ 0 & \frac{-n_d}{2\sigma^4} \end{array}\right)_{\sigma_{\text{fid}}}$$

What if we can't differentiate through our likelihood / statistic ?

For an arbitrary statistic Q:

$$F_{ij} = \frac{\partial Q_{\alpha}}{\partial \theta_i} C_{\alpha\beta}^{-1} \frac{\partial Q_{\beta}}{\partial \theta_j}$$

where

$$\frac{\partial Q_{\alpha}}{\partial \theta_{i}} \approx \frac{Q(\theta_{i}^{+}) - Q(\theta_{i}^{-})}{\theta^{+} - \theta^{-}}$$

Cramér-Rao bound: $\langle (\theta_{\alpha} - \langle \theta_{\alpha} \rangle) (\theta_{\beta} - \langle \theta_{\beta} \rangle) \rangle \geq \mathbf{F}_{\alpha\beta}^{-1}$

Gives us a lower bound for the (average) variance of a parameter estimate

Information Maximising Neural Networks

Can we train a neural network to compress a universe simulation down to a couple of numbers ?

 $f: \mathbf{d} \mapsto \mathbf{x}$

Information Maximising Neural Networks

1) adopt a Gaussian likelihood form to compute our Fisher information:

Charnock et al (2018) arXiv:1802.03537

Information Maximising Neural Networks

1) adopt a Gaussian likelihood form to compute our Fisher information:

$$-2 \ln \mathcal{L}(\mathbf{x}|\mathbf{d}) = \left(\mathbf{x} - \boldsymbol{\mu}_f(\boldsymbol{\theta})\right)^T \boldsymbol{C}_f^{-1}(\mathbf{x} - \boldsymbol{\mu}_f(\boldsymbol{\theta}))$$

2) Compute IMNN Fisher:

$$\mathbf{F}_{\alpha\beta} = \mathrm{tr}[\boldsymbol{\mu}_{f,\alpha}^T \ C_f^{-1} \boldsymbol{\mu}_{f,\beta}]$$

3) train until Fisher information is maximised at a fiducial model

Charnock et al (2018) arXiv:1802.03537

Main IMNN Scheme

Fisher information at the Field. level

Overdensity Field

Field-level information is found in *fluctuations at the pixel level*

(known) theoretical field information content (all pixels) !

Makinen et al (2021) arXiv:2107.07405

obtain an exact posterior with compressed simulations !

- ABC
- Gaussian Approximation
- -- Analytic Likelihood

Makinen et al (2021) arXiv:2107.07405

• Final Inference

-ABC requires 12,000 simulations over prior to obtain 350 accepted points

-DELFI requires 4000 simulations sampled in batches of 1000 from posterior

FAQ: WHERE IS THE INFORMATION HIDING?

Catalogs: usually a bad idea

halo halo 2 1 halo n

LOREOM IPSUMAT CONSTRUM ETRIM KIST	Lorem ipsum dolor	Amister umarki finish	Gatolep odio un accums	Tortores remus justica		
	8 288	123 %	YES	\$89		
	123	87 %	NO	\$129		
	1005	12 %	NO	\$99		
	56	69 %	N/A	\$199		
	5 554	18 %	NO	\$999		
	12 569	112 %	NO	\$123		
	779	33 %	N/A	\$56		
	6 112	27 %	YES	\$684		
VectorStock*	COTStock* VectorStock.com/26829535					

catalog

Catalogs: usually a bad idea

Cosmic Graphs

Makinen et al (2022) arXiv:2207.05202

- A graph G is a *tuple* of nodes $V = \{v_i\}$, edges, $E = \{e_k, s_k, r_k\}$, and global features u
- Each node and edge is a *vector*
- Edges propagate information to nodes, via senders s_k and receivers r_k

Graphs 101

Neural Networks also work on graphs !

Functions of edges and nodes can be learned with simple connected networks:

$$\mathbf{e}'_{k} \leftarrow \phi^{e}(\mathbf{e}_{k}, \mathbf{u})$$
$$\mathbf{v}'_{i} \leftarrow \phi^{v}(\mathbf{v}_{i}, \mathbf{e}'_{k}, \mathbf{u})$$
$$\mathbf{u}' \leftarrow \phi^{u}(\mathbf{v}'_{i}, \mathbf{e}'_{k}, \mathbf{u})$$

Halo graph representation

Nodes: masses (positions)

Edges: distances and angles between halos

- 1. Take all halos with $M > 1.5 \times 10^{15} M_{\odot}$ (roughly 100 halos per simulation)
- 2. Connect all halos within a radius r_{connect}

Graph Neural Networks

What if we can't differentiate through our likelihood / statistic ?

For an arbitrary statistic $Q = \mu_{\text{graph}}$:

$$F_{ij} = \frac{\partial \mu_{\alpha}}{\partial \theta_i} C_{\alpha\beta}^{-1} \frac{\partial \mu_{\beta}}{\partial \theta_j}$$

where

$$\frac{\partial \mu_{\alpha}}{\partial \theta_{i}} \approx \frac{\mu_{\text{graph}}(\theta_{i}^{+}) - \mu_{\text{graph}}(\theta_{i}^{-})}{\theta^{+} - \theta^{-}}$$

Graphs can be used in the IMNN scheme !

Graphs: super modular

Where is the information hiding ?

Invariant vs non-invariant graphs

Graphs: super modular

Information plateaus to the same level across graphs / network architectures

Makinen et al (2022) https://arxiv.org/abs/2207.05202

Graphs: super modular

Where is the information hiding ?

What's being learned ?

What's being learned ?

fixing catalogue length removes fixing catalogue length removes network can network can network can	catalogue N^{v}	graph assembly	$\ln\det F$	epistemic	aleatoric
	fixed	without mass		5.03 ± 0.47	5.98 ± 1.06
		with mass		12.43 ± 1.44	12.39 ± 0.22
		$2\mathrm{PCF}$	9.74		
	variable	without mass		17.89 ± 0.33	$\overline{17.66\pm0.27}$
		with mass		17.40 ± 0.57	17.85 ± 0.12
		$2\mathrm{PCF}$	14.19		
co longe					
no sity :					
de					

Adding Noise

Adding Noise

Makinen et al (in prep)

TAKEAWAYS

- Cosmology is just an optimization problem !
- IMNNs can help find asymptotically lossless

statistics automatically

• Using neural networks that respect symmetries and data structures improves compression

Get the code !

CO Browser-based inference tutorial: <u>https://bit.ly/cosmicGraphsColab</u>

Blog: https://tlmakinen.github.io/blog/2022/09/12/cosmicgraphs

Github: <u>https://github.com/tlmakinen/</u>cosmicGraphs

THANKS !

https://tlmakinen.github.io/

https://github.com/tlmakinen

CREDITS: This presentation template was created by **Slidesgo**, including icons by Flaticon, and infographics & images by Freepik. Please keep this slide for attribution.

Steps to SBI with IMNNs

- 1. Train IMNN at fiducial model
- 2. Simulate over a prior (one that contains your Fisher)
- 3. Feed simulations through IMNN funnel
- 4. Perform density estimation in compression space

Neural Density Estimation

Goal: parameterize the posterior $p(\theta|\mathbf{x}) \propto p(\mathbf{x}|\theta)p(\theta)$ with Conditional Masked Autoregressive Flows

Alsing et al (2018): https://arxiv.org/abs/1903.00007