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Supernovae

Type la

e \White dwarf progenitor
e Standardisable candles

Core-collapse

e Massive star progenitor
e \ery diverse properties

Significance of supernovae:
e Cosmologically useful

e Create and distribute heavy elements
e Influence their surroundings




Supernovae

- The recent history of supernova discovery &

1000 & More than 20,000 events discovered over 130 years
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From 2024(ish):

Legacy Survey of
Space and Time at
Vera Rubin
Observatory (LSST) -
tens of thousands
per year

Credit: Mark Sullivan



Supernova Classification

Supernova classes defined based on
spectral features

High rate of discovery makes
photometric classification vital

For supernova cosmologists,
classification is a simple binary la vs
non-la problem

For core-collapse astrophysicists, it is
far more complex than that

Machine learning-based classification
techniques are being widely developed

The Supernova Zoo
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Training on Simulations g it E OF

CAMBRIDGE

e Challenges with training on real data

o Lack of training data

o Biased training set
e Training on simulated data mitigates for the issues involved
e Limited by quality of simulations

o Accurate simulations require good physical understanding of population

o Supernovae are complex and diverse, simulations fail to reproduce full
variability of population

o Consistent drop in performance when applying models trained on simulations
to real data
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Generative Models CAMBRIDGE

e Generative models allow you to draw from the underlying distribution of
your data without making any assumptions about it

e \We can use generative models to create synthetic supernovae without
knowing anything about the physics involved

e Generating synthetic training sets using generative adversarial
networks (GANs) has been used to improve the performance of
classification models, both within astronomy and beyond (e.g.
Motamed+21, Garcia-Jara+22)
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Generative Adversarial Networks (GANS) CAMBRIDGE
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Application to Supernovae
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Application to Supernovae UNIVERSITY OF

CAMBRIDGE

e Train a GAN using recurrent neural networks (RNNSs) for both generator and
discriminator, allows for variable length time series generation

e Phases and photometric data + uncertainties generated together as below
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Light Curve Examples (SNe Il) =™ CAMBRIDGE
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Peak Observed Brightness
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Light Curve Populations CAMBRIDGE
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Augmenting Rare Supernova Classes

Previous plots were for sample of
~350 simulated supernovae

Training on a much smaller data set
of ~30 supernovae still produces
comparable results

For rare SN classes with few
examples, this approach has the
potential to augment very sparse
training sets
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Summary §* CAMBRIDGE

e GANSs have the ability to generate realistic supernova light curves, and the
potential to improve the performance of photometric classifiers

e Improvements and future work:
o Train a classifier with generated data and assess performance
o Retrain on real data

o Explore conditional models, allowing one model to generate all types of
supernovae

o Explore other types of generative model such as diffusion models



