Testing the Predictions of General Relativity with Gravitational Waves Michalis Agathos - Kavli Research Fellow KICC/DAMTP

Cambridge - 30 Sep 2021

LIGO Hanford

LIGO Livingston

VIRGO

01

Black Holes of Known Mass

66

You may want to try to test GR with those

-Captain Obvious

Testing GR: Motivation

[Yunes+ PRD 94 084002 (201

GW150914

- fgw: 30→132→250 Hz within < 0.2s
- v/c: 0.03→0.13→0.5

Strong-field Mighly relativistic

Testing GR with Gravitational Waves

What are we testing?

- + waveform systematics
- + noise model & calibration

Inspiral - Merger - Ringdown J.J. ... シ $\tilde{h}(f) = \mathcal{A}f^{-7/6}\cos(2\Phi(f;m_1,m_2) + \phi_0)$ $\Phi = \left(\frac{v}{c}\right)^{-5}\sum_{i=0}^{N} \left[\psi_i + \psi_i^{(l)}\ln\frac{v}{c}\right] \left(\frac{v}{c}\right)^i$ 0.30 0.35 0.40 0.45 TIME (S)

GWTC-2: Analysis on residuals

LVC PRD 103, 122002 (2021) [arXiv:2010.14529]

- Residual SNR consistent with noise
- No significant trend with overall SNR
- p-value statistics are regular

Inspiral - Merger-Ringdown consistency LVC PRD 103, 122002 (2021)

- Inspiral signal gives progenitor masses & spins
- Post-inspiral signal gives final BH mass & spin
- GR (NR) gives relation between masses and spins between progenitor and final BH

[arXiv:2010.14529]

GWTC-2 Black Hole Quadrupole

- All properties of a Kerr BH are uniquely ulletdetermined by knowing its mass and spin
- Spin-induced quadrupole: ullet

 $Q = -\kappa \chi^2 M^3$, $\kappa_{\rm BH} = 1$

- Non-Kerr compact objects will in general have ullet $\kappa \neq 1$, e.g. neutron-/boson-/grava- stars, etc.
- We measure a combination of k to be **consistent** \bullet with the Kerr BH value

LVC PRD **103**, 122002 (2021) [arXiv:2010.14529]

GW propagation **Modified Dispersion Relation**

 $f^{\alpha-1}$

- Massive graviton:
- Generalization:

$$E^2 = p^2 c^2 + \mathbb{A} p^\alpha c^\alpha$$

 $E^2 = p^2 c^2 + m_q^2 c^4$

• Phase modification:

[Will 1994] [Mirshekari+ 2011]

$$\delta \Psi_{\alpha}(f) = -\beta(\pi M f) - \frac{\pi D_{\alpha}}{(1-\alpha)\lambda_{\mathbb{A}}^{2-\alpha}(1+z)^{1-\alpha}}$$

	m_g	$ \bar{A}_0 $		$ \bar{A}_{0.5} $		$ \bar{A}_1 $		$ \bar{A}_{1.5} $		$ \bar{A}_{2.5} $		$ \bar{A}_3 $		$ \bar{A}_{3.5} $		$ \bar{A}_4 $	
	$[10^{-23}]$	< >	$Q_{\rm GR}$	< >	$Q_{\rm GR}$	< >	$Q_{\rm GR}$	< >	$Q_{\rm GR}$	< >	$Q_{\rm GR}$	< >	$Q_{\rm GR}$	< >	$Q_{\rm GR}$	< >	$Q_{\rm GR}$
	eV/c^2]	$[10^{-45}]$	[%]	$[10^{-38}]$	[%]	$[10^{-32}]$	[%]	$[10^{-26}]$	[%]	$[10^{-14}]$	[%]	$[10^{-8}]$	[%]	$[10^{-2}]$	[%]	[10 ⁴]	[%]
GWTC-1	4.70	7.99 3.39	79	1.17 0.70	73	2.51 1.21	70	6.96 3.70	86	5.05 8.01	28	2.94 3.66	25	2.01 3.73	35	1.44 2.34	34
GWTC-2	1.76	1.75 1.37	66	0.46 0.28	66	1.00 0.52	79	3.35 1.47	83	1.74 2.43	31	1.08 2.17	17	0.76 1.57	12	0.64 0.88	25

LVC PRD 103, 122002 (2021) [arXiv:2010.14529]

GW150914: Parameterized tests of GR

- Phase evolution of the binary is dictated by GR ullet
- Violation of GR would modify **inspiral** dynamics ullet
- Allow for parameterized violations of GR and constrain ullet

[LVC PRL 116, 221101 (2016)]

Ringdown analysis Testing the no-hair theorem

$$f_{lmn} = f_{lmn}^{GR}$$

$$\tau_{lmn} = \tau_{lmn}^{GF}$$

 $\begin{aligned} &\hat{f}_{nn}^{R}(M,J)(1+\delta\hat{f}_{lmn}) \\ &\hat{f}_{nn}^{R}(M,J)(1+\delta\hat{\tau}_{lmn}) \end{aligned}$

Is there anything <u>beyond</u> ringdown? Searching for Exotic Compact Objects

[Cardoso+ 2017] [Tsang, MA+ arXiv:1804.04877] [Tsang, MA+ arXiv:1906.11168] [Lo+ arXiv:1811.07431]

LVC PRD **103**, 122002 (2021) [arXiv:2010.14529]

Fvent	log <i>B</i> IMRE	Fvent	log <i>P</i> IMRE
	$\log_{10} \mathcal{D}_{\rm IMR}$		$\log_{10}\mathcal{D}_{\rm IMR}$
GW150914	-0.57	GW170809	-0.22
GW151226	-0.08	GW170814	-0.49
GW170104	-0.53	GW170818	-0.62
GW170608	-0.44	GW170823	-0.34
GW190408_181802	-0.93	GW190706_222641	-0.10
GW190412	-1.30	GW190707_093326	0.08
GW190421_213856	-0.11	GW190708_232457	-0.87
GW190503_185404	-0.36	GW190720_000836	-0.45
GW190512_180714	-0.56	GW190727_060333	0.01
GW190513_205428	-0.03	GW190728_064510	0.01
GW190517_055101	0.16	GW190828_063405	0.10
GW190519_153544	-0.10	GW190828_065509	-0.01
GW190521	-1.82	GW190910_112807	-0.22
GW190521_074359	-0.72	GW190915_235702	0.17
GW190602_175927	0.13	GW190924_021846	-0.03
GW190630_185205	0.08		

GW Polarizations

GR

LVC PRD **103**, 122002 (2021) [arXiv:2010.14529]

non-GR

GW170817

• Speed of gravity VS speed of light!

$$-3\times 10^{-15} \leq \frac{\Delta v}{v_{\rm EM}} \leq +7\times 10^{-16}$$

• Shapiro time delays

$$\delta t_{\rm S} = -\frac{1+\gamma}{c^3} \int_{r_{\rm e}}^{r_{\rm o}} U(r(l)) dl$$
$$-2.6 \times 10^{-7} \leqslant \gamma_{\rm GW} - \gamma_{\rm EM} \leqslant 1.2 \times 10^{-6}$$

But wait, there's more!

GW190521 So massive...

Component masses at

$$m_1 = 85^{+21}_{-14} M_{\odot}, m_2 = 66^{+17}_{-18} M_{\odot}$$

• Not supposed to be there (pair-instability)

Is it really what we think it is?

Updated 2020-09-02 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

GW190814 What is it?

- High mass-ratio binary
- Secondary mass at $\sim 3-5\,M_{\odot}$

Updated 2020-05-16 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

Can't wait for 04

...and O3b ...and Einstein Telescope ...and Cosmic Explorer

...and LISA

 $\bullet \bullet \bullet$