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“You may want to try to test GR with those

-Captain Obvious



Testing GR: Motivation

[ Yunes+ PRD 94 084002 (2016)]



GW150914
• fgw: 30➞132➞250 Hz within < 0.2s  

• v/c: 0.03➞0.13➞0.5 

Strong-field 

Highly relativistic



Testing GR with Gravitational Waves

Generation Propagation Detection

+ waveform systematics 

+ noise model & calibration 

What are we testing?



A pair of black holes orbiting each other will create gravitational 

waves, ripples in space and time. As these waves are emitted, the or-

bit will shrink. The black holes get closer together and move faster 

and faster about each other. Eventually they merge together and 

form a bigger black hole. This emits gravitational waves as it settles 

down to its final shape.

The signal:

Date: 14 September 2015

Time: 09:50:45 UTC

Peak strain: ~10 -21

Peak frequency: ~150 Hz

Arrival time difference between Hanford and Livingston: ~7 ms

Where:

Distance: ~1 billion light years

Redshift: ~0.09

Location on sky resolved to ~600 square degrees (most likely 

southern hemisphere)

Orientation: face-on/off

A billion years ago, such an event happened. On September 14, the 

gravitational waves reached Earth and the final fraction of a second 

was detected by LIGO. Gravitational waves are a stretch and squash 

of space, and by the time the signals reached Earth they are tiny. We 

measure a minuscule change in the distance between the mirrors in 

a LIGO instrument. Below we show what such a signal from this event 

should look like.

The source:

Primary black hole

mass: ~36 solar masses

spin: <0.7

Secondary black hole

mass: ~29 solar masses

spin: <0.9

Gravitational wave energy output equivalent to ~3 solar masses

Final black hole:

mass: ~62 solar masses

spin: ~0.7

Christopher Berry

A signal from two merging black holes 

Information extracted from the signal GW150914 
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Inspiral - Merger - Ringdown
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GWTC-2: Analysis on residuals

• Residual SNR consistent with noise 

• No significant trend with overall SNR 

• p-value statistics are regular 6

TABLE II. Waveforms subtracted to study residuals in Sec. IV A.

Event Ref. Approximant Ref.

GW190412 [111] IMRPhenomPv3HM [112, 113]
GW190521 [82, 83] NRSur7dq4 [106]
GW190814 [66] IMRPhenomPv3HM [112, 113]

All others [16] IMRPhenomPv2 [98–100]

multiplying likelihoods from individual events [50], as done
in [15]. Equation (1) may then be interpreted as a posterior on
the value of x, and is identical to the combined posteriors as
computed in [15]. In the sections below, we present both types
of combined results (inferred �, and fixed � = 0), facilitating
comparisons to previously reported constraints. For a concrete
demonstration of the usefulness of the hierarchical approach
see Sec. IV B (and the related Appendix B), where we show
how this technique succesfully identifies a subset of signals not
conforming to the null hypothesis (due to known systematics,
in this case), while the multiplied-likelihood approach does
not.

Finally, under certain circumstances, statements from the set
of measurements may be obtained by studying the empirical
distribution of some detection statistic for a frequentist null
test of the hypothesis that GR is a good description of the data.
As for the residuals test (Sec. IV A), this may be done if the
analysis yields a distribution of p-values, obtained by compar-
ing some detection statistic against an empirical background
distribution for each event. If the null hypothesis holds, we
expect the resulting p-values to be uniformly distributed in the
interval [0, 1]. Agreement with this expectation can be quanti-
fied through a meta p-value obtained through Fisher’s method
[129]. It can also be represented visually through a probability-
probability (PP) plot, displaying the fraction of events yielding
p-values smaller than or equal to any given number: under
the null hypothesis, the PP plot should be diagonal (see also
Appendix A).

IV. CONSISTENCY TESTS

A. Residuals test

A generic way of quantifying the success of our GR wave-
forms in describing the data is to study the residual strain after
subtracting the best-fit template for each event [130]. Resid-
ual analyses are sensitive to any sort of modeling systematics,
whether they arise from a deviation from GR or more pro-
saic reasons. Results from similar studies were previously
presented in [5, 15, 66, 83].

We follow the procedure described in [15]. For each event
in our set, we subtract the maximum likelihood (best-fit) GR-
based waveform from the data to obtain residuals for a 1 s
window centered on the trigger time reported in [16]. Except
for the three events detailed in Table II, we obtain the GR
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FIG. 1. Upper limit on the residual network SNR (SNR90) for each
event, as a function of SNR recovered by the maximum-likelihood
template (SNRGR), with the corresponding p-value shown in color
(see Table III). Solid (empty) markers indicate events detected in
O3a (O1 or O2). Diamonds highlight the O3a events yielding the
highest (GW190727 060333) and lowest (GW190421 213856) p-
values, p = 0.97 and p = 0.07 respectively.

prediction using the IMRPhenomPv2 waveform family.2 We
then use BayesWave to place a 90%-credible upper-limit on
the leftover coherent signal-to-noise ratio (SNR). To evaluate
whether this value, SNR90, is consistent with instrumental
noise fluctuations, we measure the coherent power in 193 sets
of noise-only detector data around each event. This yields a p-
value for noise-producing coherent power with SNRn

90 greater
than or equal to the residual value SNR90, i.e., p = P(SNRn

90 �
SNR90 | noise).

Our results for O3a events are summarized in Table III (see
Table II in [15] for O1 and O2 events). For each event, we
present the values of the residual SNR90, as well as the corre-
sponding fitting factor FF90 = SNRGR /(SNR2

res + SNR2
GR)1/2,

where SNRres is the coherent residual SNR and SNRGR is the
SNR of the best-fit template. This quantifies agreement be-
tween the best-fit template and the data as being better than
FF90 ⇥ 100% [5, 15]. Table III also shows the SNR90 p-values.

Figure 1 displays the SNR90 values reported in Table III as
a function of the SNR of the best-fit template, with SNR90
p-values encoded in the marker colors; events preceding O3
are identified by an empty marker (see Table II in [15]). If the
GR model is a good fit for the data, the magnitude of SNR90
should depend only on the state of the instruments at the time
of each event, not on the amplitude of the subtracted template.
This is consistent with Fig. 1, which reveals no sign of such a
trend.

The variation in SNR90 is linked to the distribution of the
corresponding p-values, as suggested by Fig. 1. The O3a event
yielding the highest (lowest) p-value is GW190727 060333
(GW190421 213856) with SNR90 = 4.88 and p = 0.97

2 For GW190814, we also used SEOBNRv4PHM, which yielded results
consistent with IMRPhenomPv3HM [66].
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FIG. 2. Fraction of events yielding a residuals-test p-value less than
or equal to the abscissa. The light-blue band marks the 90%-credible
region for our measurement, factoring in the uncertainty due to a finite
number of both events and background instantiations (Appendix A).
The meta p-value for a uniform distribution is 0.39.

(SNR90 = 7.52 and p = 0.07), and is highlighted in Fig. 1
by a red (blue) diamond. Although GW190408 181802 is
the O3a event with the highest residual power (SNR90 =
8.48), the p-value of 0.15 indicates that this is not inconsis-
tent with the background distribution. Two pre-O3a events,
GW170814 and GW170818, yielded higher SNR90 than
GW190408 181802 [15], as seen in Fig. 1.

The set of p-values shown in Table III is consistent with
all coherent residual power being due to instrumental noise.
Assuming that this is indeed the case, we expect the p-values
to be uniformly distributed over [0, 1]. Agreement with a uni-
form distribution is represented via the PP plot in Fig. 2, which
shows that the measurement agrees with the null hypothesis
(diagonal line) within 90% credibility (computed as detailed in
Appendix A). We also compute a meta p-value for a uniform
distribution of 0.39 (see Sec. III B). This demonstrates no sta-
tistically significant deviations between the observed residual
power and the detector noise around the set of events.

B. Inspiral–merger–ringdown consistency test

GR predicts that the final state of the coalescence of two BHs
will be a single perturbed Kerr BH [131–134]. Assuming that
GR is valid, the mass and spin of the remnant BH inferred from
the low-frequency portion of the signal should be consistent
with those measured from the high-frequency part [135–137],
where the low- and high-frequency regimes roughly correspond
to the inspiral and postinspiral, respectively, when considering
the dominant mode [137]. This provides a consistency test

TABLE III. Results of the residuals analysis (Sec. IV A). For each
event, we present the SNR of the subtracted GR waveform (SNRGR),
the 90%-credible upper limit on the residual network SNR (SNR90), a
corresponding lower limit on the fitting factor (FF90), and the p-value.

Events SNRGR Residual SNR90 FF90 p-value

GW190408 181802 16.06 8.48 0.88 0.15
GW190412 18.23 6.67 0.94 0.30
GW190421 213856 10.47 7.52 0.81 0.07
GW190503 185404 13.21 5.78 0.92 0.83
GW190512 180714 12.81 5.92 0.91 0.44
GW190513 205428 12.85 6.44 0.89 0.70
GW190517 055101 11.52 6.40 0.87 0.69
GW190519 153544 15.34 6.38 0.92 0.65
GW190521 14.23 6.34 0.91 0.28
GW190521 074359 25.71 6.15 0.97 0.35
GW190602 175927 13.22 5.46 0.92 0.86
GW190630 185205 16.13 5.13 0.95 0.52
GW190706 222641 13.39 7.80 0.86 0.18
GW190707 093326 13.55 5.89 0.92 0.25
GW190708 232457 13.97 6.00 0.92 0.19
GW190720 000836 10.56 7.30 0.82 0.18
GW190727 060333 11.62 4.88 0.92 0.97
GW190728 064510 13.47 5.98 0.91 0.53
GW190814 25.06 6.43 0.97 0.84
GW190828 063405 16.13 8.47 0.89 0.12
GW190828 065509 9.67 6.30 0.84 0.41
GW190910 112807 14.32 5.60 0.93 0.65
GW190915 235702 13.82 8.30 0.86 0.09
GW190924 021846 12.21 5.91 0.90 0.57

for GR, related to the remnant-focused studies we present in
Sec. VII and the postinspiral coe�cients in Sec. V A.

We take the cuto↵ frequency f IMR
c between the inspiral and

postinspiral regimes to be the m = 2 mode GW frequency of
the innermost stable circular orbit of a Kerr BH, with mass
Mf and dimensionless spin magnitude �f estimated from the
full BBH signal assuming GR. The final mass and spin are cal-
culated by averaging NR-calibrated final-state fits [138–140],
where the aligned-spin final spin fits are augmented by a con-
tribution from the in-plane spins [141, 142]. We compute f IMR

c
from augmented NR-calibrated fits applied to the posterior me-
dian values for the masses and spins of the binary components.
We then independently estimate the binary’s parameters from
the low- (high-) frequency portion of the signal, restricting the
Fourier-domain likelihood calculation to frequencies below
(above) the cuto↵ frequency f IMR

c . The two independent esti-
mates of the source parameters are used to infer the posterior
distributions of Mf and �f using the augmented NR-calibrated
final-state fits. For the signal to be consistent with GR, the two
estimates must be consistent with each other.

For this test, we require the inspiral and postinspiral portions
of the signal to be informative. As a proxy for the amount
of information that can be extracted from each part of the
signal, we calculate the SNR of the inspiral and postinspiral
part of the signal using the preferred waveform model for
each event (Table II), evaluated at the maximum a posteriori
parameters for the complete IMR posterior distributions [16].
As in [15], we only apply the IMR consistency test to events

LVC PRD 103, 122002 (2021)  [arXiv:2010.14529]



 Inspiral - Merger-Ringdown consistency
• Inspiral signal gives progenitor masses & spins 

• Post-inspiral signal gives final BH mass & spin 

• GR (NR) gives relation between masses and 
spins between progenitor and final BH
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FIG. 3. Results of the IMR consistency test for the selected
BBH events with median (1 + z)M < 100M� (see Table IV). The
main panel shows the 90% credible regions of the posteriors for
(�Mf/M̄f ,��f/�̄f ) assuming a uniform prior, with the cross marking
the expected value for GR. The side panels show the marginalized
posterior for �Mf/M̄f and ��f/�̄f . The gray distribution correspond
to the product of all the individual posteriors. O3a (pre-O3a) events
are plotted with solid (dot–dashed) traces. Color encodes the red-
shifted total mass in solar masses, with a turnover between blue and
red around the median of the (1 + z)M/M� distribution for the plotted
events. The results for GW190412 and GW190814 are identified by
dotted and dashed contours, respectively. The two events with con-
tours that do not enclose the origin are GW170823 (dot–dashed) and
GW190814 (dashed). GW190408 181802 has a multimodal posterior
that results in the small contour (blue) away from zero.

that have SNR > 6 in both regions. When studying the set
of measurements as a whole (cf. Sec III B), we impose an
additional criterion on the median redshifted total mass such
that (1 + z)M < 100 M�. This additional cut further ensures
that the binary contains su�cient information in the inspiral
regime because the test would be strongly biased for heavy
BBHs. A criterion based on mass was not applied in [15]
because most GWTC-1 events automatically satisfied it. The
cuto↵ frequency and SNRs for all events used in this analysis
are detailed in Table IV.3

In order to constrain possible departures from GR, we intro-
duce two dimensionless parameters that quantify the fractional

3 The frequency f IMR
c was determined using preliminary parameter inference

results and the values in Table IV may slightly di↵er to those obtained using
the posterior samples in GWTC-2. However, the test is robust against small
changes to the cuto↵ frequency [137].

TABLE IV. Results from the IMR consistency test (Sec. IV B). f IMR
c

denotes the cuto↵ frequency between the inspiral and postinspiral
regimes; ⇢IMR, ⇢insp, and ⇢postinsp are the SNR in the full signal, the in-
spiral part, and the postinspiral part respectively; and the GR quantile
QGR denotes the fraction of the likelihood enclosed by the isoproba-
bility contour that passes through the GR value, with smaller values
indicating better consistency with GR. For lower SNRs, the likelihood
is typically broader and QGR is generally higher. An asterisk denotes
events with median (1 + z)M > 100M�, for which we expect strong
systematics. We highlight GW190412 with a dagger as we show
results for comparison to [111], but the event is not used in the joint
likelihood as the postinspiral SNR is below the threshold for inclusion.
The di↵erence in the results for GWTC-1 events compared to [15] is
due to the change in priors.

Event f IMR
c [Hz] ⇢IMR ⇢insp ⇢postinsp QGR [%]

GW150914 132 25.3 19.4 16.1 55.7
GW170104 143 13.7 10.9 8.5 29.0
GW170809 136 12.7 10.6 7.1 26.6
GW170814 161 16.8 15.3 7.2 22.9
GW170818 128 12.0 9.3 7.2 26.8
GW170823 102 11.9 7.9 8.5 93.3

GW190408 181802 164 15.0 13.6 6.4 11.4
GW190412 213 19.1 18.2 5.9 69.0†
GW190421 213856 82 10.4 8.1 6.6 78.7⇤
GW190503 185404 99 13.7 11.5 7.5 53.2
GW190513 205428 125 13.3 11.2 7.2 35.0
GW190519 153544 78 15.0 10.0 11.2 85.6⇤
GW190521 074359 105 25.4 23.4 9.9 0.0
GW190630 185205 135 16.3 14.0 8.2 58.8
GW190706 222641 67 12.7 7.8 10.1 96.5⇤
GW190727 060333 96 12.3 10.0 7.2 98.7⇤
GW190814 207 24.8 23.9 6.9 99.9
GW190828 063405 132 16.2 13.8 8.5 21.5
GW190910 112807 92 14.4 9.6 10.7 29.3⇤

di↵erence between the two estimates

�Mf

M̄f
= 2

Minsp
f � Mpostinsp

f

Minsp
f + Mpostinsp

f

, (2)

��f

�̄f
= 2
�insp

f � �postinsp
f

�insp
f + �postinsp

f

, (3)

where the superscripts denote the estimate of the mass or the
spin from the inspiral and postinspiral portions of the signal
[136]. As in [15], we perform parameter estimation using uni-
form priors for the component masses and spin magnitudes and
an isotropic prior on the spin orientations; this choice induces a
highly non-uniform e↵ective prior in �Mf/M̄f and ��f/�̄f . In
order to alleviate this, and in contrast with [15], we re-weight
the posteriors to work with a uniform prior for the deviation
parameters. This eliminates confounding factors and has the
advantage of more clearly conveying the information gained
from the data. For example, binary configurations with com-
parable mass ratios and �e↵ ⇠ 0 will lead to a remnant spin
⇠0.7 [138–140], which means that the �f prior is concentrated
around this value and that, consequently, the ��f is concen-
trated around 0; this leads to artificially narrow ��f posteriors

hmmm…

LVC PRD 103, 122002 (2021)  
[arXiv:2010.14529]
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GWTC-2 Black Hole Quadrupole

• All properties of a Kerr BH are uniquely 
determined by knowing its mass and spin 

• Spin-induced quadrupole: 
       ,      

• Non-Kerr compact objects will in general have 
, e.g. neutron-/boson-/grava- stars, etc. 

• We measure a combination of κ to be consistent 
with the Kerr BH value

Q = − κχ2M3 κBH = 1

κ ≠ 1

14

TABLE VI. Results from parametrized tests of GW generation
(Sec. V A). Combined constraints on each deviation parameter �p̂i
from the full set of GWTC-2 BBH measurements using the IMRPhe-
nomPv2 or SEOBNRv4 ROM waveforms, as indicated by “P” or “S”
respectively in the second column. The general constraints do not
assume the deviation takes the same value for all events, and are sum-
marized by the hyperdistribution mean µ and standard deviation �, as
well as the inferred direct constraint on �p̂i (defined in Sec. III B). The
restricted constraints assume a common value of the parameter shared
by all events, and are summarized by the constraint on �p̂i. All quan-
tities represent the median and 90%-credible intervals excepting �,
for which we provide an upper limit. For both general and restricted
results, QGR is the GR quantile associated with Fig. 6.

p̂i WF General Restricted
µ � �p̂i QGR �p̂i QGR

'�2 P �0.02+0.04
�0.03 < 0.08 �0.02+0.09

�0.08 68% �0.02+0.02
�0.02 93%

[⇥20] S �0.01+0.03
�0.04 < 0.07 �0.01+0.06

�0.07 66% �0.01+0.02
�0.02 74%

'0 P 0.02+0.05
�0.04 < 0.09 0.02+0.10

�0.10 33% 0.02+0.04
�0.03 20%

S 0.01+0.05
�0.04 < 0.10 0.01+0.12

�0.10 39% 0.01+0.04
�0.03 30%

'1 P 0.06+0.14
�0.13 < 0.27 0.05+0.32

�0.29 33% 0.07+0.10
�0.11 15%

S 0.04+0.14
�0.14 < 0.31 0.04+0.32

�0.33 38% 0.04+0.11
�0.10 21%

'2 P 0.05+0.09
�0.09 < 0.17 0.04+0.18

�0.18 28% 0.04+0.07
�0.07 14%

S 0.03+0.09
�0.08 < 0.16 0.03+0.17

�0.18 32% 0.02+0.07
�0.04 28%

'3 P �0.02+0.05
�0.05 < 0.10 �0.02+0.11

�0.10 69% �0.03+0.04
�0.04 90%

S �0.00+0.05
�0.06 < 0.10 �0.00+0.10

�0.11 52% �0.01+0.05
�0.05 58%

'4 P 0.14+0.44
�0.41 < 0.72 0.16+0.76

�0.77 33% 0.17+0.36
�0.36 22%

S �0.02+0.39
�0.33 < 0.66 �0.02+0.78

�0.69 52% 0.02+0.33
�0.30 46%

'5l P �0.03+0.15
�0.15 < 0.27 �0.04+0.29

�0.30 61% �0.02+0.12
�0.15 65%

S �0.00+0.17
�0.16 < 0.32 �0.00+0.35

�0.38 50% 0.02+0.12
�0.15 49%

'6 P 0.10+0.32
�0.32 < 0.56 0.10+0.64

�0.62 36% 0.08+0.30
�0.27 30%

S �0.00+0.35
�0.34 < 0.62 �0.02+0.76

�0.64 51% 0.02+0.30
�0.33 49%

'6l P �0.41+1.07
�1.01 < 1.27 �0.42+1.67

�1.50 69% �0.80+1.32
�1.29 84%

S �0.09+0.97
�1.01 < 1.33 �0.09+1.65

�1.58 54% �0.20+1.08
�1.20 62%

'7 P 0.02+0.70
�0.75 < 1.09 0.01+1.25

�1.29 49% �0.08+0.75
�0.66 56%

S 0.19+0.62
�0.72 < 1.14 0.19+1.14

�1.34 37% 0.32+0.63
�0.72 23%

�2 P �0.06+0.07
�0.08 < 0.12 �0.06+0.14

�0.14 79% �0.07+0.08
�0.07 90%

�3 P �0.05+0.08
�0.08 < 0.12 �0.05+0.14

�0.14 76% �0.05+0.07
�0.06 90%

↵2 P �0.04+0.13
�0.15 < 0.30 �0.04+0.32

�0.33 61% �0.04+0.11
�0.13 73%

↵3 P �0.23+0.65
�0.56 < 1.10 �0.24+1.36

�1.19 64% �0.32+0.62
�0.55 80%

↵4 P 0.11+0.22
�0.23 < 0.44 0.11+0.46

�0.51 30% 0.10+0.19
�0.22 21%

for neutron stars or BH mimickers [156–158, 163]. For ex-
ample, depending upon the equation of state, the value of 
can vary between ⇠2 and ⇠14 for a spinning neutron star [164–
166], and between ⇠10 and ⇠150 for slowly spinning boson
stars [81, 167–169]. The spin-induced quadrupole moments
first appear along with the self-spin terms in the GW phasing
formula as a 2PN leading-order e↵ect [156]. In this paper,
we also incorporate 3PN corrections to the GW phase due to
the spin-induced quadrupole moment of binary components
[145, 170]. As shown in [171], the measurement accuracy of
these parameters is largely correlated with masses and spins
of the binary system. Despite the degeneracy, the presence
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FIG. 9. Posterior probability distribution on the spin-induced
quadrupole moment parameter �s from the GWTC-2 events listed
in the SIM column of Table I. We highlight GW151226, GW190412,
GW190720 000836, and GW190728 064510, as they yield the tight-
est distributions (with standard deviation ��s < 150); other events are
shown in gray. The inset expands the plot range to the full range of the
prior, removing GW190412 to facilitate display of the other events.
The vertical dashed line at �s = 0 marks the Kerr BBH expectation.

of spin terms at other PN orders as well as the non-spinning
PN coe�cients help to break the correlations of  with spins
and mass parameters, permitting its measurement for spinning
binary systems. It has been demonstrated in the past that it
is possible to measure spin-induced multipole moments for
intermediate mass-ratio [172, 173] and extreme mass-ratio in-
spirals [174, 175]. This parameter can also be constrained
through electromagnetic observations of active galactic nuclei
(see [176] for a recent measurement) and supermassive BHs
[177].

In principle, the BH nature of the binary components can be
probed by measuring their individual spin-induced quadrupole
moment coe�cients 1 and 2, parametrized as deviations away
from unity �1 and �2. However, for the stellar-mass compact
binaries accessible to LIGO and Virgo, it is often di�cult to
simultaneously constrain �1 and �2 due to the strong degen-
eracies between these and other binary parameters, like the
spins and masses [159, 178]. We define the symmetric and
anti-symmetric combinations of the individual deviation pa-
rameters as �s = (�1 + �2)/2 and �a = (�1 � �2)/2, but
in this analysis we restrict �a = 0, implying �1 = �2 = �s.
The assumption �a = 0 also demands that the two compact
objects be of the same kind which holds well when both the
objects are BHs. For non-BH binaries, this restriction leads
to stronger implications, requiring the two compact objects to
have similar masses and equation of state as �1 and �2 are
functions of these. Having a non-BH compact object in the
binary will violate these restrictions, which could lead to sys-
tematic biases in the estimation of �s. For non-BBH signals,
the value of �s would be o↵set from zero, given the definition,
and it is unlikely for such o↵sets to be completely compensated
by the aforementioned systematics. Therefore, the posteriors
of �s for non-BBH signals will tend to peak away from zero,
hinting at the presence of an exotic compact object.

For a more general test of BBH nature, one might also
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Modified Dispersion Relation

• Massive graviton:  

• Generalization:  

• Phase modification:
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TABLE VII. Results for the modified dispersion analysis (Sec. VI). The table shows 90%-credible upper bounds on the graviton mass mg and
the absolute value of the modified dispersion relation parameter A↵, as well as the GR quantiles QGR. The < and > labels denote the upper
bound on |A↵| when assuming A↵ < 0 and > 0, respectively, and Ā↵ = A↵/eV2�↵ is dimensionless. Rows compare the GWTC-1 results from
[15] to the GWTC-2 results.

mg |Ā0| |Ā0.5| |Ā1| |Ā1.5| |Ā2.5| |Ā3| |Ā3.5| |Ā4|
[10�23 < > QGR < > QGR < > QGR < > QGR < > QGR < > QGR < > QGR < > QGR
eV/c2] [10�45] [%] [10�38] [%] [10�32] [%] [10�26] [%] [10�14] [%] [10�8] [%] [10�2] [%] [104] [%]

GWTC-1 4.70 7.99 3.39 79 1.17 0.70 73 2.51 1.21 70 6.96 3.70 86 5.05 8.01 28 2.94 3.66 25 2.01 3.73 35 1.44 2.34 34
GWTC-2 1.76 1.75 1.37 66 0.46 0.28 66 1.00 0.52 79 3.35 1.47 83 1.74 2.43 31 1.08 2.17 17 0.76 1.57 12 0.64 0.88 25

and positive values of A↵. The enhanced stringency of our
measurements relative to our previous GWTC-1 results is also
visible here, as seen in the smaller size of the blue violins
with respect to the gray, and the fact that the medians (blue
circles) are generally closer to the GR value. The latter is
also manifested in the GR quantiles QGR = P(A↵ < 0) in
Table VII, which tend to be closer to 50% (QGR = 50% implies
the distribution is centered on the GR value).

From our combined GWTC-2 data, we bound the graviton
mass to be mg  1.76 ⇥ 10�23eV/c2, with 90% credibility
(Table VII). This represents an improvement of a factor of
2.7 relative to [15]. The new measurement is 1.8 times more
stringent than the most recent Solar System bound of 3.16 ⇥
10�23 eV/c2, also with 90% credibility [193].

VII. REMNANT PROPERTIES

A. Ringdown

In GR, the remnant object resulting from the coalescence of
two astrophysical BHs is a perturbed Kerr BH. This remnant
BH will gradually relax to its Kerr stationary state by emitting
GWs corresponding to a specific set of characteristic quasi-
normal modes (QNMs), whose frequency f and damping time

⌧ depend solely on the BH mass Mf and the dimensionless spin
�f . This last stage of the coalescence is known as ringdown.
The description of the ringdown stage is based on the final
state conjecture [194–198] stating that the physical spectrum
of QNMs is exclusively determined by the final BH mass
and spin (the no-hair conjecture [161, 199–206]) and that the
Kerr solution is an attractor of BH spacetimes in astrophysical
scenarios.6

By analyzing the postmerger signal from a BBH coales-
cence independently of the preceding inspiral, we can verify
the final state conjecture, test the nature of the remnant ob-
ject (complementary to the searches for GW echoes discussed
in Sec. VII B), and estimate directly the remnant mass and
spin assuming it is a Kerr BH—which, in turn, allows us to
test GR’s prediction for the energy and angular momentum
emitted during the coalescence (complementary to the IMR
consistency test discussed in Sec. IV B, and the postinspiral
parameters in Sec. V A). This set of analyses is referred to as
BH spectroscopy [122, 123, 210–219]. Unlike the IMR con-
sistency test, a ringdown-only analysis is not contaminated by
frequency mixing with other phases of the signal and it does
not require a large amount of SNR in the inspiral regime (the
lack of such SNR is why the IMR consistency test was unable
to be applied to GW190521 [82, 83], for instance).

The complex-valued GW waveform during ringdown can be
expressed as a superposition of damped sinusoids:

h+(t) � ih⇥(t) =
+1X

`=2

X̀

m=�`

+1X

n=0

A`mn exp
"
� t � t0

(1 + z)⌧`mn

#
exp
"
2⇡i f`mn(t � t0)

1 + z

#
�2S `mn(✓, �,�f ), (7)

where z is the cosmological redshift, and the (`,m, n) indices
label the QNMs. The angular multipoles are denoted by `
and m, while n orders modes of a given (`,m) by decreasing
damping time. The frequency and the damping time for each
ringdown mode can be computed for a perturbed isolated BH
as a function of its mass Mf and spin �f [220–223]. For each
(`,m, n), there are in principle two associated frequencies and
damping times: those for a prograde mode, with sgn( f`mn) =

6 In principle such frequencies and damping times would also depend on the
electric charge of the remnant BH. However, for astrophysically relevant
scenarios the BH charge is expected to be negligible [207–209].

sgn(m), and those for a retrograde mode, with sgn( f`mn) ,
sgn(m)—retrograde modes are not expected to be relevant
[212], so we do not include them in Eq. (7). The frequency
and damping time of the +|m| mode are related to those of the
�|m| mode by f`mn = � f`�mn and ⌧`mn = ⌧`�mn for m , 0. The
complex amplitudesA`mn characterize the excitation and the
phase of each ringdown mode at a reference time t0, which for
a BBH merger can be predicted from numerical simulations
[224–226]. In general,A`mn is independent ofA`�mn.

The angular dependence of the GW waveform is contained
in the spin-weighted spheroidal harmonics �2S `mn(✓, �,�f),
where ✓, � are the polar and azimuthal angles in a frame cen-
tered on the remnant BH and aligned with its angular mo-

LVC PRD 103, 122002 (2021)   
[arXiv:2010.14529]

16

FIG. 11. 90% credible upper bounds on the absolute value of the mod-
ified dispersion relation parameter A↵. The upper limits are derived
from the distributions in Fig. 12, treating the positive and negative
values of A↵ separately. Picoelectronvolts provide a convenient scale
because 1 peV ' h ⇥ 250 Hz, where 250 Hz is close to the most sen-
sitive frequencies of the LIGO and Virgo instruments. Marker style
distinguishes the new GWTC-2 results from the previous GWTC-1
results in [15].

dispersion relations, we adopt the common phenomenological
modification to GR introduced in [185] and applied to LIGO
and Virgo data in [8, 15]:

E2 = p2c2 + A↵p↵c↵ , (6)

where A↵ and ↵ are phenomenological parameters, and GR is
recovered if A↵ = 0 for all ↵. To leading order, Eq. (6) may
encompass a variety of predictions from di↵erent extensions
to GR [7, 185–191]; this includes massive gravity for ↵ = 0
and A↵ > 0, with a graviton mass mg = A1/2

0 c�2 [186]. As
in [15], we consider ↵ values from 0 to 4 in steps of 0.5,
excluding ↵ = 2, which is degenerate with an overall time
delay. A nonzero A↵ manifests itself in the data as a frequency-
dependent dephasing of the GW signal, which builds up as
the wave propagates towards Earth and hence increases with
the source comoving distance, potentially enhancing weak GR
deviations.

The analysis makes use of a modified version of the IMR-
PhenomPv2 waveform (checks for systematics using SEOB-
NRv4HM ROM were presented in [15]). We use Eq. (3) of
[15] to compute the dephasing for a given A↵. This expression
was derived in [185] by treating waves emitted at a given time
as particles that travel at the particle velocity vp = pc2/E as-
sociated with the wave’s instantaneous frequency. Di↵erent
dephasings can arise from di↵erent prescriptions, e.g., using
the group velocity instead, but the corresponding bound on A↵
can be obtained by rescaling with an appropriate factor in most
cases. See discussions after Eq. (5) in [15] for details.

We assume priors flat in A↵ except when reporting the mass
of the graviton, where we use a prior flat in that quantity. We
analyze 31 events from GWTC-2 satisfying our FAR threshold
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FIG. 12. Violin plots of the full posteriors on the modified dispersion
relation parameter A↵ calculated from the GWTC-2 events (blue),
with the 90% credible interval around the median indicated. For
comparison, we also show the GWTC-1 previous measurement (gray),
reported in [15].

(see Sec. II and Table I).4 Since we can take A↵ and mg to be
universal parameters, results from di↵erent events can be easily
combined by multiplying the individual likelihoods. Although
we only discuss the overall combined results here, individual-
event posteriors are available in [53], as for other tests.

We show our results in Table VII and Figs. 11 and 12. Ta-
ble VII and Fig. 11 present constraints on the allowed amount
of dispersion through the 90%-credible upper limits on |A↵|,
computed separately for A↵ > 0 and A↵ < 0. There is no-
ticeable improvement when combining GWTC-2 results with
respect to the previous result in [15]. This is the case for both
positive and negative amplitudes, meaning that we are more
tightly constraining these quantities closer to the nondispersive,
GR prediction (A↵ = 0). The average improvement in the
|A↵| upper limits relative to [15] is a factor 2.6, although this
fluctuates slightly across ↵’s. Overall, this is consistent with
the factor of

p
31/7 ⇡ 2.1 naively expected from the increase

in the number of events analyzed.5
Upper limits on the A↵ parameters can be uncertain due

to the di�culty in accurately sampling the long tails of the
posteriors. To quantify this uncertainty, we follow a Bayesian
bootstrapping procedure [192], as done previously in [8, 15],
with 2000 bootstrap realisations for each value of ↵ and sign of
A↵. We find that the average width of the 90%-credible interval
of the individual-event upper limits is a factor of 0.12 of the
reported upper limit itself, i.e., the average uncertainty in the
upper limit is 0.12. Out of all upper limits, 9 carry fractional
uncertainties larger than 0.5. The most uncertain upper limit
is that for GW190828 065509 and A4 < 0, with a fractional
uncertainty of 1.7.

Figure 12 shows the overall posterior obtained for negative

4 We were unable to analyze GW190521 because this event required the use
of an HM waveform, which is not yet implemented for this test.

5 We have analyzed 8 events from GWTC-1, one more than for the combined
results in [15] because those excluded GW170818.



GW150914: Parameterized tests of GR
• Phase evolution of the binary is dictated by GR 

• Violation of GR would modify inspiral dynamics 

• Allow for parameterized violations of GR and constrain
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FIG. 6. 90% upper bounds on the fractional variations of the known
PN coe�cients with respect to their GR values. The orange squares
are the 90% upper bounds obtained from the single-parameter analy-
sis of GW150914. As a comparison, the blue triangles show the 90%
upper bounds extrapolated exclusively from the measured orbital-
period derivative Ṗorb of the double pulsar J0737-3039 [12, 85]. The
GW phase deduced from an almost constant Ṗorb cannot provide sig-
nificant information as the PN order is increased, so we show the
bounds for the former only up to 1PN order. We do not report on the
deviation of the 2.5PN coe�cient, which is unmeasurable because
it is degenerate with the reference phase. We also do not report on
the deviations of the logarithmic terms in the PN series at 2.5PN and
3PN order, which can be found in Table I and in Fig. 7.

stage of the phase evolution is known analytically up to (v/c)7

and it is parameterized in terms of the PN coe�cients ' j,
j = 0, . . . , 7 and the logarithmic terms ' jl, j = 5, 6. The
late-inspiral stage, parameterized in terms of � j, j = 1, . . . , 4,
is defined as the phenomenological extension of the PN se-
ries to (v/c)11. The early and late inspiral stages are denoted
simply as inspiral both in Ref. [39] and in Fig. 5. The inter-
mediate stage that models the transition between the inspiral
and the merger–ringdown phase is parameterized in terms of
the phenomenological coe�cients � j, j = 1, 2, 3. Finally, the
merger–ringdown phase is parameterized in terms of the phe-
nomenological coe�cients ↵ j, j = 1, 2, 3. Due to the proce-
dure through which the model is constructed, which involves
fitting a waveform phasing ansatz to a calibration set of EOB
waveforms joined to NR waveforms [39], there is an intrinsic
uncertainty in the values of the phenomenological parameters
of the IMRPhenom model. For the intermediate and merger–
ringdown regime, we verified that these intrinsic uncertainties
are much smaller than the corresponding statistical uncertain-
ties for GW150914, and thus do not a↵ect our conclusions. In
the late-inspiral case, the uncertainties associated with the cal-
ibration of the � j parameters are very large and almost com-
parable with our results. Therefore, we do not report results
for the � j parameters.

As said, we construct the gIMR model by introducing (frac-
tional) deformations � p̂i for each of the IMRPhenom phase

parameters pi, which appear in the di↵erent stages of the
coalescence discussed above. At each point in parameter
space, the coe�cients pi are evaluated for the local phys-
ical parameters (masses, spins) and multiplied by factors
(1 + � p̂i). In this parameterization, GR is uniquely defined
as the locus in the parameter space where each of the phe-
nomenological parameters �p̂i is zero. In summary, our bat-
tery of testing parameters consists of: (i) early-inspiral stage:
{�'̂0, �'̂1, �'̂2, �'̂3, �'̂4, �'̂5l, �'̂6, �'̂6l, �'̂7}5, (ii) late-inspiral
stage: {��̂2, ��̂3, ��̂4}, (iii) intermediate regime: {��̂2, ��̂3},
and (iv) merger–ringdown regime: {�↵̂2, �↵̂3, �↵̂4}. We do not
consider parameters that are degenerate with either the refer-
ence time or the reference phase. For our analysis, we ex-
plore two scenarios: single-parameter analysis, in which only
one of the parameters is allowed to vary while the remaining
ones are fixed to their GR value, that is zero, and multiple-
parameter analysis in which all parameters in each stage are
allowed to vary simultaneously.

The rationale behind our choices of single- and multiple-
parameter analyses comes from the following considerations.
In most known alternative theories of gravity [13, 14, 86], the
corrections to GR extend to all PN orders even if in most cases
they have been computed only at leading PN order. Consid-
ering that GW150914 is an inspiral–merger–ringdown signal
sweeping through the detector between 20 Hz and 300 Hz,
we expect to see signal deviations from GR at all PN orders.
The single-parameter analysis corresponds to minimally ex-
tended models that can capture deviations from GR that occur
predominantly, but not only, at a specific PN order. In the
multiple-parameter analysis, the correlations among the pa-
rameters are very significant. In other words, a shift in one of
the testing parameters can always be compensated by a change
of the opposite sign in another parameter, and still return the
same overall GW phase. Thus, it is not surprising that the
multiple-parameter case provides a much more conservative
statement on the agreement between GW150914 and GR. We
delay to future studies the identification of optimally deter-
mined directions in the �p̂i space by performing a singular
value decomposition along the lines suggested in Ref. [87].

For each set of testing parameters, we perform a separate
LALInference analysis, where in concert with the full set of
GR parameters [3] we also explore the posterior distributions
for the specified set of testing parameters. Since our testing
parameters are purely phenomenological (except the parame-
ters that govern the PN early-inspiral stage), we choose their
prior probability distributions to be uniform and wide enough
to encompass the full posterior probability density function in
the single-parameter case. In particular we set �'̂i 2 [�20, 20];
��̂i 2 [�30, 30]; ��̂i 2 [�3, 3]; �↵̂i 2 [�5, 5]. In all cases we
obtain estimates of the physical parameters – e.g., masses and
spins – that are in agreement with those reported in Ref. [3].

5 Unlike Ref. [39], we explicitly include the logarithmic terms �'̂5l and �'̂6l.
We also include the 0.5PN parameter �'̂1; since '1 is zero in GR, we define
�'̂1 to be an absolute shift rather than a fractional deformation.
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FIG. 5. 90% upper bounds on the absolute magnitude of the GR violating parameters �p̂i. The left and middle panels show the �1PN through
3.5PN inspiral coe�cients, while the right panel shows the postinspiral coe�cients {��̂i, �↵̂i}. Constraints obtained from individual events
with IMRPhenomPv2 are represented by horizontal stripes, colored by the median redshifted chirp mass (1 + z)M, inferred assuming GR.
Filled gray (unfilled black) triangles mark the constraints obtained with IMRPhenomPv2 (SEOBNRv4 ROM) when all GWTC-2 events are
combined assuming a shared deviation from GR. For reference, we show the equivalent results for GWTC-1 (IMRPhenomPv2) and the individual
constraints from GW170817 (IMRPhenomPv2 NRTidal), as red and blue circles respectively.

could arise as modifications to the binding energy and angular
momentum of the source, or as modifications to the energy and
angular momentum flux, both leading to modified equations
of motion. In this section, we focus on constraining devia-
tions from GR by introducing parametric deformations to an
underlying GR waveform model.

The early inspiral of compact binaries is well described by
the PN approximation [74, 75, 91, 143–151], a perturbative
approach to solving the Einstein field equations in which we
perform an expansion in terms of a small velocity parame-
ter v/c. Once the intrinsic parameters of the binary are fixed,
the coe�cients at di↵erent orders of v/c in the PN series are
uniquely determined. A consistency test of GR using the PN
phase coe�cients was first proposed in [18–21, 23], and a gen-
eral model independent parametrization was introduced in [22].
A Bayesian framework based on the general parametrization
was introduced in [24–26], with subsequent extensions to the
late-inspiral and postinspiral coe�cients being introduced in
[27].

In order to constrain GR violations, we adopt two ap-
proaches. In the first approach, we directly constrain the an-
alytical coe�cients that describe the phase evolution of the
IMRPhenomPv2 waveform model [98–100]. The frequency-
domain GW phase '( f ) of IMRPhenomPv2 can be broken
down into three key regions: inspiral, intermediate, and merger–
ringdown. The inspiral in IMRPhenomPv2 is described by a
PN expansion augmented with higher order pseudo-PN coe�-
cients calibrated against EOB–NR hybrid waveforms. The PN
phase evolution is written as a closed-form frequency domain
expression by employing the stationary phase approximation.
The intermediate and merger–ringdown regimes are described
by analytical phenomenological expressions. The cuto↵ fre-
quency f PAR

c between the inspiral and intermediate region in
IMRPhenomPv2 is defined to be GM(1 + z) f PAR

c /c3 = 0.018,
where z is the redshift and f PAR

c is independent of the intrinsic
parameters of the binary. We use pi to collectively denote all
of the inspiral {'i} and postinspiral {↵i, �i} parameters. The
deviations from GR are expressed in terms of relative shifts

�p̂i in the waveform coe�cients pi ! (1 + �p̂i)pi, which are
introduced as additional free parameters to be constrained by
the data.

The second approach [14] can apply modifications to the
inspiral of any underlying waveform model, analytical or non-
analytical, by adding corrections that correspond to deforma-
tions of a given inspiral coe�cient �'̂i at low frequencies and
tapering the corrections to 0 at the cuto↵ frequency f PAR

c . The
second approach is applied to the non-analytical model SEOB-
NRv4 ROM [152], a frequency-domain reduced-order model
for the SEOBNRv4 waveform approximant [77]. There is
a subtle di↵erence in the way in which deviations from GR
are introduced and parametrized in the two approaches. In
the first approach, we directly constrain the fractional devia-
tions in the non-spinning portion of the phase whereas in the
second approach the fractional deviations are also applied to
the spin sector. As in [15], the posteriors in the second ap-
proach are mapped post-hoc to the parametrization used in
the first approach, consistent with previously presented results.
See Sec. VII A for an SEOB-based analysis of the postmerger
signal, interpreted in the context of studies of the remnant
properties.

We constrain deviations from the PN phase coe�cients pre-
dicted by GR using deviation parameters �'̂i. Here, i denotes
the power of v/c beyond the leading order Newtonian contri-
bution to the phase '( f ). The frequency dependence of the
phase coe�cients is given by f (i�5)/3, so that �'̂i quantifies
deviations to the i/2 PN order. We constrain coe�cients up
to 3.5PN (i = 7), including terms that have a logarithmic de-
pendence occurring at 2.5 and 3PN order. The non-logarithmic
term at 2.5PN (i = 5) cannot be constrained as it is degenerate
with the coalescence phase. The coe�cients describing devia-
tions from GR were introduced in Eq. (19) of [24]. In addition,
we include a coe�cient at i = �2 corresponding to an e↵ective
�1PN term that, in some circumstances, can be interpreted as
arising from the emission of dipolar radiation. The full set of
inspiral parameters that we constrain is therefore

{�'̂�2, �'̂0, �'̂1, �'̂2, �'̂3, �'̂4, �'̂5l, �'̂6, �'̂6l, �'̂7} . (4)
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FIG. 6. Combined GWTC-2 BBH results for parametrized violations of GR obtained from the designated events in Table V, for each deviation
parameter �p̂i (abscissa). The probability densities shown in color represent the population-marginalized expectation, Eq. (1), obtained from a
hierarchical analysis allowing independent GR deviations for each event. In contrast, the unfilled black distributions result from restricting all
events to share a common value of each parameter. Phenom (SEOB) results were obtained with IMRPhenomPv2 (SEOBNRv4 ROM) and are
shown in blue (red); the {�i, ↵i} coe�cients are not probed with SEOB, as they are intrinsic to Phenom waveforms. For the hierarchical results,
error bars denote symmetric 90%-credible intervals and a white dashed line marks the median. The dashed horizontal line at �p̂i = 0 highlights
the expected GR value.

In Fig. 5 we show the 90% upper bounds on the absolute
magnitude of the GR violating coe�cients, |� p̂i|. The indi-
vidual bounds are colored by the mean redshifted chirp mass,
(1 + z)M, as inferred assuming GR (Table I). The results for
GWTC-2 include all new BBHs reported in [16] plus the BBHs
reported in GWTC-1 [17], combined by assuming a shared
value of the coe�cient across events (i.e., by multiplying the in-
dividual likelihoods). Whilst the combined results for GWTC-1
and GWTC-2 do not include the two BNS events, GW170817
and GW190425, in Fig. 5 we show the results for GW170817
separately for comparison to previously published results [14].

We broadly see that lighter binaries contribute prominently
to our constraint on the inspiral coe�cients and heavier bina-
ries drive the constraints on the postinspiral coe�cients. This is
to be expected as more (less) of the inspiral moves into the sen-
sitivity of the detectors as we decrease (increase) the mass and
we suppress (enhance) the SNR in the postinspiral. For all co-
e�cients, bar the �1PN and 0.5PN terms, the joint-likelihood
bounds determined using GWTC-1 and GWTC-2 BBHs im-
prove on all previous constraints [14, 15]. The tightest bounds
on the �1PN and 0.5PN coe�cients come from GW170817,
which improves on the GWTC-2 BBH constraints by a fac-
tor of 120 and 2.2 respectively. We find that the combined
GWTC-2 results improve on the GWTC-1 constraints by a
factor ⇠1.9 for the inspiral coe�cients and ⇠1.4 for the postin-
spiral coe�cients respectively. This improvement is broadly
consistent with the factor expected from the increased number
of events,

p
17/5 ⇡ 1.8 for the inspiral and

p
26/7 ⇡ 1.9 for

the postinspiral respectively. Neglecting the �1PN coe�cient,
we find that the 0PN term is the best constrained parameter,
|�'̂0| . 4.4 ⇥ 10�2. However, this bound is weaker than the
90% upper bound inferred from the orbital-period derivative
Ṗorb of the double pulsar J0737�3039 by a factor ⇠3 [2, 154].

Although all results from individual events o↵er support
for the GR value, a small fraction of them contain � p̂i = 0
only in the tails. This is the case for some of the coe�cients
for GW190519 153544, GW190521 074359, GW190814,

GW190828 065509, and GW190924 021846. Yet, given the
large number of events and coe�cients analyzed, this is not
surprising: for GR signals in Gaussian noise, we would expect
on average approximately 1 out of 10 independent trials to re-
turn � p̂i = 0 outside the 90%-credible level just from statistical
fluctuations.

To evaluate the set of measurements holistically, we produce
the population-marginalized distributions for each parameter
� p̂i following the method described in Sec. III B; the result is
the filled distributions in Fig. 6. These distributions represent
our best knowledge of the possible values of the �p̂i’s from
all LIGO–Virgo BBHs with FAR < 10�3 per year to date. For
comparison, Fig. 6 also shows the joint likelihoods obtained by
restricting the deviation to be the same for all events (unfilled
black distributions), which were used to derive the combined
GWTC-2 constraints in Fig. 5.

All population-marginalized distributions are consistent with
GR, with � p̂i = 0 lying close to the median for most param-
eters, and always within the 90% credible symmetric inter-
val. The medians, 90% credible intervals, and GR quantiles
QGR = P(� p̂i < 0) of these distributions are presented in
Table VI, together with equivalent quantities for the joint-
likelihood approach. A value of QGR significantly di↵erent
from 50% indicates that the null hypothesis falls in the tails
of the distribution. The quantiles may also be directly trans-
lated into z-scores defined by zGR = �

�1(QGR), where ��1 is
the inverse cumulative distribution function for a standard nor-
mal random variable. The z-score encodes the distance of the
posterior mean away from zero in units of standard deviation
(discussed below).

In terms of the overall magnitude of the allowed fractional
deviations, the parameter constrained most tightly by the hi-
erarchical analysis is �'̂�2 = �0.97+4.62

�4.07 ⇥ 10�3, within 90%
credibility. On the other hand, the loosest constraint comes
from �'̂6l = �0.42+1.67

�1.50, also within 90% credibility. In both
cases, however, the null-hypothesis lies close to the median,
with QGR = 68% and QGR = 69% respectively. The magnitude
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TABLE IX. The median value and symmetric 90% credible interval
of the redshifted frequency and damping time estimated using the
full IMR analysis (IMR), the pyRing analysis with a single damped
sinusoid (DS), and the pSEOBNRv4HM analysis (pSEOB).

Event Redshifted Redshifted
frequency [Hz] damping time [ms]

IMR DS pSEOB IMR DS pSEOB

GW150914 248+8
�7 247+14

�16 � 4.2+0.3
�0.2 4.8+3.7

�1.9 �
GW170104 287+15

�25 228+71
�102 � 3.5+0.4

�0.3 3.6+36.2
�2.1 �

GW170814 293+11
�14 527+340

�332 � 3.7+0.3
�0.2 25.1+22.2

�19.0 �
GW170823 197+17

�17 222+664
�62 � 5.5+1.0

�0.8 13.4+31.8
�9.8 �

GW190408 181802 319+11
�20 504+479

�459 � 3.2+0.3
�0.3 10.0+32.5

�8.9 �
GW190421 213856 162+13

�14 � 171+50
�16 6.3+1.2

�0.8 � 8.5+5.3
�4.2

GW190503 185404 190+17
�15 � 265+501

�79 5.3+0.8
�0.8 � 3.5+3.4

�1.8

GW190512 180714 382+32
�42 220+686

�42 � 2.6+0.2
�0.2 26.1+21.3

�22.9 �
GW190513 205428 242+25

�27 250+493
�88 � 4.3+1.2

�0.4 5.3+19.2
�3.8 �

GW190519 153544 127+10
�9 123+11

�19 124+12
�13 9.7+1.7

�1.6 9.7+9.0
�3.8 10.3+3.6

�3.1

GW190521 68+3
�4 65+3

�3 67+2
�2 16.0+4.0

�2.5 22.1+12.4
�7.4 30.7+7.7

�7.4

GW190521 074359 198+7
�8 197+15

�15 205+15
�12 5.4+0.4

�0.4 7.7+6.4
�3.3 5.3+1.5

�1.2

GW190602 175927 105+10
�9 93+13

�22 99+15
�15 10.2+2.0

�1.5 10.0+17.2
�4.5 8.8+5.4

�3.6

GW190706 222641 109+11
�10 109+7

�12 112+7
�8 11.3+2.3

�2.3 20.4+25.2
�12.9 19.4+7.2

�8.9

GW190708 232457 497+10
�46 642+279

�596 � 2.1+0.2
�0.1 24.6+23.0

�22.6 �
GW190727 060333 178+17

�16 345+587
�267 201+11

�21 6.2+1.1
�0.8 21.1+25.6

�17.9 15.4+5.3
�6.1

GW190828 063405 239+10
�11 247+350

�15 � 4.8+0.6
�0.5 17.3+25.3

�10.4 �
GW190910 112807 177+8

�8 166+9
�8 174+12

�8 5.9+0.9
�0.5 13.2+17.1

�6.2 9.5+3.1
�2.7

GW190915 235702 232+13
�18 534+371

�493 � 4.6+0.7
�0.6 15.0+30.1

�13.1 �

set of simulated numerical relativity signals with parameters
consistent with GW190521 into real data immediately adja-
cent to the event, and ran the pSEOB analysis on them. For
3 out of 5 injections around the event we recover posteriors
that overestimate the damping time and for which the injected
GR value lies outside the 90% credible interval, suggesting
that the overestimation of the damping time for GW190521 is
a possible artifact of noise fluctuations. A similar study was
conducted with pyRing using the damped sinusoid model for
GW190828 063405 and we also observed overestimations of
the damping time. This suggests that the overestimation of
the damping time is a common systematic error for low-SNR
signals.

In Fig. 14, we show the 90% credible region of the joint
posterior distribution of the frequency and damping time devia-
tions, as well as their respective marginalized distributions. We
only include events that have SNR > 8 in both the inspiral and
postinspiral regimes, with cuto↵ frequencies as in Table IV.
This is because, in order to make meaningful inferences about
� f̂220 and �⌧̂220 with pSEOB in the absence of measurable HMs,
the signal must contain su�cient information in the inspiral
and merger stages to break the degeneracy between the binary
total mass and the GR deviations. The fractional deviations
obtained this way quantify the agreement between the pre- and
postmerger portions of the waveform, and are thus not fully
analogous to the pyRing quantities.

From Fig. 14, the frequency and the damping time of the 220
mode are consistent with the GR prediction (� f̂220 = �⌧̂220 = 0)
for GW190519 153544 and GW190521 074359, while for

�0.5 0.0 0.5 1.0 1.5

�f̂220

�0.5

0.0

0.5

1.0

1.5

��̂
22
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GW190519 153544

GW190521 074359

GW190910 112807

hierarchically
combined

FIG. 14. The 90% credible region of the joint posterior distribution
of the fractional deviations of the frequency � f̂220 and the damping
time �⌧̂220, and their marginalized posterior distributions, for the
` = |m| = 2, n = 0 mode from the pSEOBNRv4HM analysis. We only
include events that have SNR > 8 in both the inspiral and postinspiral
stage in this plot where we have su�cient information to break the
degeneracy between the binary total mass and the fractional deviation
parameters in the absence of measurable HMs. The measurements
of the fractional deviations for individual events, and as a set of
measurements, both show consistency with GR.

GW190910 112807 it shows excellent agreement with GR
for � f̂220 but the GR prediction has only little support in the
marginalized posterior distribution of �⌧̂220.

In spite of the low number of events, we also apply the
hierarchical framework to the marginal distributions in Fig. 14.
The population-marginalized constraints are � f̂220 = 0.03+0.38

�0.35
and �⌧̂220 = 0.16+0.98

�0.98, which are consistent with GR for both
parameters. The �⌧̂220 measurement is uninformative, which
is not surprising given the spread of the GW190910 112807
result and the low number of events. The hyperparameters also
reflect this, since they are constrained for � f̂220 (µ = 0.03+0.17

�0.18,
� < 0.37) but uninformative for �⌧̂220 (µ = 0.16+0.47

�0.46, � <
0.88). The bounds for the fractional deviation in frequency
for the 220 mode, from the pSEOB analysis, and for the 221
mode, from the pyRing analysis, can be used to cast constraints
on specific theories of modified gravity that predict non-zero
values of these deviations [234, 235], as well as to bound
possible deviations in the ringdown spectrum caused by a non-
Kerr-BH remnant object (see, e.g., [236]).

B. Echoes

It is hypothesized that there may be compact objects having
a light ring and a reflective surface located between the light
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FIG. 13. The 90% credible region of the joint posterior distribution of
the fractional deviations of the frequency � f̂221 and the damping time
�⌧̂221, and their marginalized posterior distributions, for the ` = |m| =
2, n = 1 mode from the pyRing analysis, where we allow both the
frequency and the damping time of the 221 mode to deviate from the
GR predictions. Here we show measurements from individual events
where the data prefer the waveform model with both the fundamental
and the first overtone (n = 0, 1) modes over the model with only
the n = 0 fundamental mode. The measurements of the fractional
deviation of the frequency from individual events, and as a set of
measurements (using all 17 events), both show consistency with GR.
The fractional deviation of the damping time is mostly unconstrained.

GW events where the data prefer the waveform model with
both the fundamental and the first overtone (n = 0, 1) modes
over the model with only the n = 0 fundamental mode with
log10 B221

220 > 0. The measurements show consistency with GR
for the frequency. As for the damping time, it is essentially
unconstrained, except for events with low SNR in the ringdown
(such as GW190727 060333) where the posterior distribution
of �⌧̂221 rails towards the lower prior bound �0.9, as the data
show little evidence of the first overtone. The results broadly
agrees with previous analyses for GW150914 [123], although
the truncation time chosen here (t0 = 1126259462.42335 GPS
in Hanford) is slightly later than in [5, 123]. A hierarchi-
cal analysis of the set of measurements using all 17 events
constrains the frequency deviations to � f̂221 = 0.04+0.27

�0.32 , in
agreement with the Kerr hypothesis. The hierarchical analysis
is uninformative for �⌧̂221 within the prior bounds considered.

Finally, as another test of the consistency of the ringdown
signals with GR, we use a template which consists of a single
damped sinusoid to fit the data, where the frequency, damping
time, and complex amplitude are considered as free parameters
without imposing any predictions from GR. This means that,
for this template, we assume neither that the remnant object is
a Kerr BH, nor that it originated from a BBH coalescence. We
place uniform priors on the frequency, damping time, log of

the magnitude, and the phase of the complex amplitude. The
frequency and damping time obtained by fitting this template to
the data are shown in Table IX, where we report 90% credible
intervals from the marginalized posteriors for each of these
two parameters. The values show good agreement with the
results from full IMR analyses where GR is assumed, except
for GW170814, GW190512 180714, GW190828 063405, and
GW190910 112807, where the estimates of the damping time
from the pyRing analysis are higher than the estimates from
the full IMR analyses. Nevertheless, in all these cases the
contours of the 90% credible region in the frequency-damping
time space from the two analyses actually do overlap. We
observed that events with low SNR in the ringdown often show
overestimations of the damping time with respect to the median
value obtained using the full IMR waveform. To assess whether
the overestimation is caused by detector noise fluctuations, we
injected simulated IMR waveforms with parameters consistent
with GW190828 063405, close to the coalescence time of the
event. The injections show a similar behavior to what was
observed in the actual event, with 3 out of 10 injections having
the injected value lying outside the 90% credible interval of the
damping time. The same injections performed in a zero noise
configuration instead always have the posterior distributions
of the damping time peaking at the injected value, suggesting
that the overestimation of the damping time is associated with
the detector noise fluctuations.

2. The pSEOBNRv4HM analysis

The pSEOBNRv4HM ringdown analysis uses a parametrized
version of a spinning EOB waveform model with HMs, cal-
ibrated on non-precessing binaries [105, 216]. The analysis
uses the frequency-domain likelihood function while the wave-
form model is constructed in the time domain. In this model
the e↵ective frequency and damping time of the 220 mode are
written in terms of fractional deviations from their nominal
GR values: f220 = f GR

220 (1 + � f̂220) and ⌧220 = ⌧GR
220(1 + �⌧̂220)

[216], where � f̂220 and �⌧̂220 are estimated directly from the
data using the parameter inference techniques described in
Sec. III, and f GR

220 , ⌧GR
220 are computed using the mass and spin

of the BH remnant as determined by NR fits reported in [105].
We performed this analysis only on O3a events with a me-

dian redshifted total mass > 90M� since this analysis is com-
putationally expensive, and we expect these events to give the
best measurements among all the O3a events. Table IX shows
the redshifted e↵ective frequency f220 and the redshifted ef-
fective damping time ⌧220 of the 220 mode inferred from this
analysis.

The frequency and the damping time inferred from the
pSEOB analysis are also in good agreement with the full
IMR measurements that assume GR, except for GW190521,
GW190727 060333, and GW190910 112807 where the esti-
mates of the damping time from the pSEOB analysis are higher
than the estimates from the full IMR analyses. Nevertheless,
in all these cases the 2D 90% credible regions do overlap. In
order to better understand this issue, we investigated possible
biases due to properties of the detector noise. We injected a

flmn = f GR
lmn(M, J)(1 + δ ̂flmn)

τlmn = τGR
lmn(M, J)(1 + δ ̂τlmn)
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FIG. 1. Qualitative features of the e↵ective potential felt by
perturbations of a Schwarzschild BH compared to the case
of wormholes [12] and of star-like ECOs with a regular cen-
ter [22]. The precise location of the center of the star is model-
dependent and was chosen for visual clarity. The maximum
and minimum of the potential corresponds approximately to
the location of the unstable and stable PS, and the correspon-
dence is exact in the eikonal limit of large angular number l.
In the wormhole case, modes can be trapped between the
PSs in the two “universes”. In the star-like case, modes are
trapped between the PS and the centrifugal barrier near the
center of the star [28–30]. In all cases the potential is of fi-
nite height, and the modes leak away, with higher-frequency
modes leaking on shorter timescales.

where rmin is the location of the minimum of the potential
shown in Fig. 1. If we consider a microscopic correction
at the horizon scale (` ⌧ M), then the main contribution
to the time delay comes near the radius of the star and
therefore,

�t ⇠ �nM log

✓
`

M

◆
, ` ⌧ M , (6)

where n is a factor of order unity that takes into account
the structure of the objects. For wormholes, n = 8 to
account for the fact that the signal is reflected by the
two maxima in Fig. 1, whereas for our thin-shell gravas-
tar model and the empty-shell model it is easy to check
that n = 6 and n = 4, respectively. The results shown in
Fig. 2 for ` = 10�6M are perfectly consistent with this
picture, with the wormhole case displaying longer echo
delays than the other cases with the same compactness.
Our results show that the dependence on ` is indeed log-
arithmically for all the ECOs we studied.
As argued in Ref. [12], the logarithmic dependence dis-

played in Eq. (6) implies that even Planckian corrections
(` ⇡ LP = 2 ⇥ 10�33 cm) appear relatively soon after
the main burst of radiation, so they might leave an ob-

servable imprint in the GW signal at late times. From
Eq. (6), a typical time delay reads

�t ⇠ 54(n/4)M30


1� 0.01 log

✓
`/LP

M30

◆�
ms , (7)

where M30 := M/(30M�).
The picture of GW signal scattered o↵ the potential

barrier is also supported by two further features shown
in Fig. 2, namely the modulation and the distortion of
the echo signal. In general, modulation is due to the
slow leaking of the echo modes, which contain less en-
ergy than the initial one. In the wormhole case, this
e↵ect is stronger due to the fact that modes can also leak
to the “other universe” through tunneling at the second
peak of the potential. While the amplitude of the echoes
is model-dependent, for a given model it depends only
mildly on `. Distortion is also due to the potential bar-
rier, which acts as a low-pass filter and reflects only the
low-frequency, quasibound echo modes. This implies that
each echo is a low-frequency filtered version of the previ-
ous one and the original shape of the mode gets quickly
washed out after a few echoes1.

B. Waves generated by infalling or scattered
particles

The features above are observed in a simple scattering
process, but are also evident in the GW signal produced
by head-on collisions or close encounters, in the test-
particle limit. The latter di↵er from the radial plunge
studied in Ref. [12] in that their pericenter rmin > 3M ,
i.e. the particle does not cross the radius of the PS
(in fact, scattered particles in the Schwarzschild geom-
etry can never get inside the r = 4M surface). In
order to compute the GW signal, we use the Regge-
Wheeler-Zerilli decomposition reviewed in Appendix B
(cf. Ref. [31] for details).

We have studied the GW emitted during collisions or
scatters between point particles and ECOs; again the
general qualitative features are the same as those dis-
cussed in Section IIA and independent of the nature
of the ECO. To be specific, we show in Fig. 3 the Zer-
illi wavefunction for a point particle plunging into (left
panel) or scattering o↵ a wormhole with ` = 10�6M , with
initial Lorentz boost E = 1.5. The coordinate system we
use is such that the particles are moving along the equa-
tor, and it di↵ers - by a ⇡/2 rotation - from the coordinate
axis used in Ref. [12]. As such, the l = 2 Zerilli-Moncrief
wavefunction, for example, has contributions from az-
imuthal numbers m = 0,±2. Note also that it is easy to

1 Incidentally, we note that all these features (namely time delay,
echoes, modulation, and high-frequency filtering) are precisely
what one would expect by the scattering of sound waves in a
finite-size cavity.
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ring and the would-be event horizon. These compact objects
are referred to as exotic compact objects (ECOs), for example
gravastars [237] and fuzzballs [238, 239]. When an ECO is
formed as the remnant of a compact binary coalescence, a train
of repeating pulses known as GW echoes are emitted from
the ECO in the late postmerger stage in addition to the usual
ringdown we expect from BHs. The e↵ective potential barrier
and the reflective surface act like a cavity trapping the GWs.
Unlike BHs, which have a purely in-going boundary condition
at the event horizon, the GWs trapped in the cavity will be
reflected back and forth between the potential barrier and the
surface, emitting pulses of waves towards infinity when some
of the waves are transmitted through the potential barrier and
escape. Detecting these GW echoes would be clear evidence
of the existence of these proposed ECOs [240, 241], though
there are still no full and viable models of ECOs that produce
echoes [242, 243].

We employ a template-based approach [244] that uses the
model proposed in [245] to search for GW echoes. The wave-
form model takes the ringdown part of an IMR waveform and
repeats the modulated ringdown waveform according to five
additional echo parameters which control the relative ampli-
tude of the echoes, the damping factor between each echo, the
start time of ringdown, the time of the first echo with respect
to the merger, and the time delay between each echo. We
adopt a uniform prior for each of the echo parameters. We
used IMRPhenomPv2 as the IMR waveform approximant for
all the events we analyzed except for GW190521 where NR-
Sur7dq4 was used instead. The pipeline computes the log
Bayes factor log10 BIMRE

IMR of the data being describable by an
inspiral–merger–ringdown–echoes (IMRE) waveform versus
an IMR waveform, and uses it as the detection statistic to
identify the existence of echoes in the data.

We analyze 31 BBH signals from GWTC-2 passing our
false-alarm rate threshold (see Sec. II and Table I) and report
the search results of GW echoes in Table X.9 No statistically
significant evidence of echoes was found in the data; it was
reported in [244] that for detector noise fluctuations typical
for O1, a detection threshold for log10 BIMRE

IMR was found to
be roughly 2.48 by empirically constructing the background
distribution of the Bayes factor if we require the false-alarm
probability to be . 3⇥10�7. The event GW190915 235702 has
the highest log10 BIMRE

IMR of merely 0.17, which both indicate
negligible support for the presence of GW echoes in the data.
The null results for O1 and O2 events are consistent with what
were reported in [244, 246–250]. The posterior distributions of
the extra echo parameters mostly recover their corresponding
prior distributions, consistent with the fact that we did not
detect any echoes in the data.

9 We do not analyze GW190814 because the long data segment and high
sampling rate it requires makes the analysis prohibitively expensive.

TABLE X. Results of search for GW echoes. A positive value of
the log Bayes factor log10 BIMRE

IMR indicates a preference for the IMRE
model over the IMR model, while a negative value of the log Bayes
factor suggests instead a preference for the IMR model over the IMRE
model.
Event log10 BIMRE

IMR Event log10 BIMRE
IMR

GW150914 �0.57 GW170809 �0.22
GW151226 �0.08 GW170814 �0.49
GW170104 �0.53 GW170818 �0.62
GW170608 �0.44 GW170823 �0.34

GW190408 181802 �0.93 GW190706 222641 �0.10
GW190412 �1.30 GW190707 093326 0.08
GW190421 213856 �0.11 GW190708 232457 �0.87
GW190503 185404 �0.36 GW190720 000836 �0.45
GW190512 180714 �0.56 GW190727 060333 0.01
GW190513 205428 �0.03 GW190728 064510 0.01
GW190517 055101 0.16 GW190828 063405 0.10
GW190519 153544 �0.10 GW190828 065509 �0.01
GW190521 �1.82 GW190910 112807 �0.22
GW190521 074359 �0.72 GW190915 235702 0.17
GW190602 175927 0.13 GW190924 021846 �0.03
GW190630 185205 0.08

VIII. POLARIZATIONS

Generic metric theories of gravity may allow up to six GW
polarizations [251, 252]. These correspond to the two tensor
modes (helicity ±2) allowed in GR, plus two additional vector
modes (helicity ±1), and two scalar modes (helicity 0). The
polarization content of a GW is imprinted in the relative ampli-
tudes of the outputs at di↵erent detectors, as determined by the
corresponding antenna patterns [1, 253–256]. This fact can be
used to reconstruct the GW polarization content from the data,
although a five-detector network would be needed to do this
optimally with transient signals. The existing three-detector
network may be used to distinguish between some specific
subsets of all the possible polarization combinations.

We previously reported constraints on extreme polarization
alternatives (full tensor versus full vector, and full tensor versus
full scalar) in [13–15], using a simplified analysis that relied on
GR templates [256]. None of the events analyzed (GW170814,
GW170817, and GW170818) disfavored the tensorial hypoth-
esis. Because the source sky location was known from elec-
tromagnetic observations [257], the results were strongest for
GW170817, which we found to be highly inconsistent with the
full-vector and full-scalar hypotheses with (base ten) log Bayes
factors &20 [14]. Although this is strong evidence against vec-
tor or scalar being the only possible GW polarization, it does
not strictly preclude scenarios in which only some sources
produce vector-only or scalar-only GWs.

Here we probe the same extreme polarization hypotheses
as in previous studies, but through a di↵erent technique that
does not rely on specific waveform models. This null-stream
based polarization test is a Bayesian implementation of the
null stream construct proposed in [258], generalized to vector

LVC PRD 103, 122002 (2021)  
[arXiv:2010.14529]
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Figure 1.3: F+ (left) and F⇥ (center) antenna pattern functions for a GW interfer-
ometer for  = 0, plotted as the radial coordinate of the surface, with the zero section
being mapped on the sphere of r = 2 (purple intersection). Color represents the absolute

value. The right plot shows
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noise, shot noise, Newtonian noise, etc.). As a stochastic process, the noise can
be modelled by measuring its auto-corellation function in time:

R(⌧) ⌘ hn(t + ⌧) n(t)i ⌘ 1

2

Z 1

�1
df Sn(f)e�i2⇡f⌧ , (1.82)

where the Fourier decomposition in the second equation defines the function
Sn(f), that has units of 1/

p
Hz and is called the noise power spectral density

(PSD). Assuming that the process is Gaussian (and that it averages to zero), the
auto-correlation completely characterizes the noise; furthermore, if it does not
change in time we say that the noise is stationary. Equivalently, in the frequency
domain, Gaussian stationary noise will be uncorrelated in frequency space and
characterized by its root mean square on each frequency bin. The autocorrelation
function for ñ reads:
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Of course, it is not always the case that noise satisfies the assumptions of being
Gaussian and stationary, and this may become important in our analysis, as we
shall see in Chapter 8.

The VSR3 science run of Virgo and S6 of LIGO ended in 2011, with a maximum
sensitivity that reached

p
Sn(f) ⇠ 7 ⇥ 10�23Hz�1/2 and ⇠ 4 ⇥ 10�23Hz�1/2 re-

spectively and an absolute horizon for the network of three detectors at ⇠ 40
Mpc. After the network of initial LIGO and Virgo detectors shut down, the
instruments were disassembled and started being upgraded to bring the interfer-
ometers to their advanced configuration, towards a sensitivity improvement of
roughly an order of magnitude. Given the 1/r behaviour of the GW amplitude,
this implies an order of magnitude improvement in horizon distance, which means
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Figure 1.3: F+ (left) and F⇥ (center) antenna pattern functions for a GW interfer-
ometer for  = 0, plotted as the radial coordinate of the surface, with the zero section
being mapped on the sphere of r = 2 (purple intersection). Color represents the absolute

value. The right plot shows
q

F 2

+
+ F 2

⇥.
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TABLE XI. Base-ten logarithms of Bayes factors for di↵erent po-
larization hypotheses: full-tensor versus full-vector (log10 BT

V ), and
full-tensor versus full-scalar (log10 BT

S ). These results were obtained
with the waveform independent method described in Sec. VIII. They
are less informative than those in [13–15] because the present method
does not attempt to track the signal phase across time.

Event log10 BT
V log10 BT

S

GW170809 0.078 0.421
GW170814 �0.032 0.740
GW170818 0.002 0.344

GW190408 181802 0.076 0.480
GW190412 0.079 0.539
GW190503 185404 �0.072 1.245
GW190512 180714 �0.024 0.346
GW190513 205428 0.139 1.380
GW190517 055101 0.008 0.730
GW190519 153544 0.067 0.799
GW190521 0.093 1.156
GW190602 175927 �0.064 0.373
GW190706 222641 0.052 0.771
GW190720 000836 0.034 0.074
GW190727 060333 0.087 1.024
GW190728 064510 �0.024 0.083
GW190828 063405 0.063 0.851
GW190828 065509 �0.034 0.084
GW190915 235702 0.020 1.238
GW190924 021846 �0.051 0.384

and scalar antenna patterns [88, 253]. A null stream is a linear
combination of the data streams from di↵erent detectors that
is known to be free of true GWs with a given helicity and
sky location, irrespective of the GW waveform. Any excess
power remaining in the null stream must have been produced
by a GW signal whose helicity or sky location is not what was
assumed. We quantify such excess power by means of the null
energy, as defined in [87]. If the polarization modes and the sky
location of the GW signal are correctly specified, this quantity
will fluctuate solely due to instrumental noise and will follow
a �2 distribution [87]. This provides a likelihood function
for the hypothesis that the data contain a signal with a given
helicity and sky location. By marginalizing over the source
location, we may obtain the evidences of di↵erent polarization
hypotheses and compute Bayes factors comparing them. We
take a uniform distribution over the celestial sphere as our sky-
location prior, and compute evidences through an extended
version of the BANTAM pipeline presented in [88].

In Table XI, we present the resulting Bayes factors for full-
tensor versus full-vector (BT

V ), and full-tensor versus full-scalar
(BT

S ). None of the signals analyzed favor either of the non-
GR hypotheses (full-vector, or full-scalar) to any significant
degree. The Bayes factors in Table XI are less informative
than those in [13–15] because the present method does not
attempt to track the signal phase across time, relying only on
signal power added incoherently across time–frequency pixels

0.00 0.25 0.50 0.75 1.00 1.25

log10 BT
V/S (tensor vs non-tensor)

Vector Scalar

FIG. 15. Distribution of log10 Bayes factors for di↵erent polarization
hypotheses: full-tensor versus full-vector (red), and full-tensor versus
full-scalar (blue). The horizontal axis of this strip plot represents the
logarithm of BT

V/S in Table XI, with each red/blue marker correspond-
ing to a single event; the vertical axis carries no meaning. Values
of log10 BT

V/S < 0 indicate a preference for the nontensor hypothe-
sis (hatched region). The di↵erent spreads of the sets of markers
are as expected for GR signals and no event reaches large negative
values of log10 BT

V/S , meaning all signals are consistent with tensor
polarizations.

of the null stream [87]. The events yielding the lowest Bayes
factors are GW190503 185404 and GW190720 000836, with
log10 BT

V = �0.072 and log10 BT
S = 0.074 respectively; on

the other hand, the event yielding the highest Bayes factors is
GW190513 205428 for both vector and scalar, with log10 BT

V =

0.139 and log10 BT
S = 1.380 respectively.

The distributions of log10 BT
V and log10 BT

S are as expected
from GR signals with the observed SNRs [259]. As is clear
from Fig. 15, the scalar results more decisively favor the tensor
hypothesis than the vector ones. The asymmetry between the
vector and scalar results is explained by the intrinsic geometries
of the LIGO–Virgo antenna patterns, which make scalar waves
easier to distinguish [259]. As in previous studies, we conclude
there is no evidence for pure vector or pure scalar polarizations.

IX. CONCLUSIONS AND OUTLOOK

GWs give us an opportunity to observationally probe the
nature of gravity in its strong-field, dynamical regime, which
is di�cult to access by other means. With an ever-growing
number of detections, we are now able to put GR to the test
with increasing precision and in qualitatively new ways. In this
paper, we presented eight tests of GR and the nature of BHs
using signals from the latest LIGO–Virgo catalog, GWTC-2
[16]. These tests leverage di↵erent aspects of GW physics to
constrain the null hypothesis that our signals were produced by
merging Kerr BHs in agreement with Einstein’s theory, and that
our GR-based models are su�cient to capture their behavior.
We find that all of the LIGO–Virgo detections analyzed are
consistent with GR, and do not find any evidence for deviations
from theoretical expectations, or unknown systematics.

We began by checking the consistency of the data with the
GR prediction in a generic way through the residuals and IMR
consistency tests (Sec. IV). We found that, for all events, resid-
ual data obtained after subtracting a best-fit GR waveform
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of 5.3s. This unambiguous association confirms that BNS
mergers are progenitors of (at least some) SGRBs.

4. Implications for Fundamental Physics

Little or no arrival delay between photons and GWs over
cosmological distances is expected as the intrinsic emission
times are similar and the propagation speeds of EM and GWs
are thought to be identical. In this Section we discuss the
implications on fundamental physics of the temporal offset of

1.74 0.05 s+ o( ) measured between GW170817 and
GRB170817A.

Standard EM theory minimally coupled to general relativity
predicts that GWs and light propagate with identical speeds.
The refractive index of vacuum is expected to be unity, and
both waves are expected to be affected by background
gravitational potentials in the same way. The arrival delay of
only a few seconds across a distance greater than one hundred
million light years places stringent constraints on deviations
from fundamental principles. We use the observed temporal
offset, the distance to the source, and the expected emission-
time difference to place constraints on the deviation of the
speed of gravity from the speed of light, and on violations of
Lorentz invariance and the equivalence principle.

4.1. Speed of Gravity

Assuming a small difference in travel time tD between
photons and GWs, and the known travel distance D, the
fractional speed difference during the trip can be written

v v v t DEM EMD » D , where v v vGW EMD = - is the differ-
ence between the speed of gravity vGW and the speed of light
vEM. This relation is less constraining for small distances, hence
we conservatively use here D 26 Mpc= , the lower bound of
the 90% credible interval on luminosity distance derived from
the GW signal (Abbott et al. 2017e). If we conservatively
assume that the peak of the GW signal and the first photons
were emitted simultaneously, attributing the entire

1.74 0.05 s+ o( ) lag to faster travel by the GW signal, this
time difference provides an upper bound on vD . To obtain a
lower bound on vD , one can assume that the two signals were
emitted at times differing by more than 1.74 0.05 s+ o( ) with
the faster EM signal making up some of the difference. As a
conservative bound relative to the few second delays discussed
in Section 2.1, we assume the SGRB signal was emitted 10 s
after the GW signal. The resulting constraint on the fractional
speed difference is

v
v

3 10 7 10 . 115

EM

16- -- ´
D

+ ´- - ( )

The intergalactic medium dispersion has negligible impact on
the gamma-ray photon speed, with an expected propagation
delay many orders of magnitude smaller than our errors
on vGW.

Lags much longer than 10 s are proposed in alternative
models (e.g., Ciolfi & Siegel 2015; Rezzolla & Kumar 2015),
and emission of photons before the merger is also possible
(Tsang et al. 2012). Hence, certain exotic scenarios can extend
this time difference window to (−100 s, 1000 s), yielding a 2
orders of magnitude broadening of the allowed velocity range
on either side. While the emission times of the two messengers
are inherently model dependent, conservative assumptions
yield dramatic improvements over existing indirect (Kostelecky

& Russell 2017) and direct (Cornish et al. 2017) constraints,
which allow for time differences of more than 1000 years.
Future joint GW–GRB detection should allow disentangling
the emission time difference from the relative propagation time,
as only the latter is expected to depend on distance.

4.2. Lorentz Invariance Violation Limits

Within a comprehensive effective field theory description of
Lorentz violation (Colladay & Kostelecký 1997, 1998;
Kostelecký 2004; Tasson 2014), the relative group velocity
of GWs and EM waves, is controlled by differences in
coefficients for Lorentz violation in the gravitational sector and
the photon sector at each mass dimension d (Kostelecký &
Mewes 2016, 2009, 2008; Wei et al. 2017). We focus here on
the non-birefringent, non-dispersive limit at mass dimension
d=4, as it yields by far the most impressive results. In this
case, the difference in group velocities for the two sectors takes
the form

v Y n s c
1
2

1 . 2
ℓm

ℓ

ℓm
ℓ

ℓm I ℓm

2

1 4 4

-

åD = - - -+⎜ ⎟⎛
⎝

⎞
⎠( ˆ) ( ) ( )( )

( )
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The result is presented in a spherical harmonic, Yℓm, basis, sℓm
4( )

and c I ℓm
4

( )
( ) being spherical-basis coefficients for Lorentz violation

in the gravitational and EM sectors, respectively. The direction n̂
refers to the sky position (provided in Coulter et al. 2017a,
2017b).
For ease of comparison with the many existing sensitivities

(Shao 2014a, 2014b; Shao et al. 2017; Kostelecký & Tasson
2015; Bourgoin et al. 2016; Le Poncin-Lafitte et al. 2016;
Kostelecky & Russell 2017) to the d=4 gravity-sector
coefficients (Bailey & Kostelecký 2006; Hees et al. 2016), an
analysis in which the coefficients are constrained one at a time
is useful (Flowers et al. 2016), with all other coefficients,
including the EM sector ones, set to zero. These results are
presented in Table 1 along with the best constraints for each
coefficient prior to this work. These results can be compared
with the isotropic A, LVa Lorentz violation parametrization
(Mirshekari et al. 2012) used by Abbott et al. (2017c) in
dispersive GW tests. The 2LVa = limit of this parametrization
is equivalent to the isotropic limit of the framework discussed
above, with s A400

4 pl( ) . Constraints on A for 2LVa = can
be obtained from the first line of Table 1; these cannot be
established within the analysis carried out in Abbott et al.
(2017c).

4.3. Test of the Equivalence Principle

Probing whether EM radiation and GWs are affected by
background gravitational potentials in the same way is a test of
the equivalence principle (Will 2014). One way to achieve this
is to use the Shapiro effect (Shapiro 1964), which predicts that
the propagation time of massless particles in curved spacetime,
i.e., through gravitational fields, is slightly increased with
respect to the flat spacetime case. We will consider the
following simple parametrized form of the Shapiro delay
(Krauss & Tremaine 1988; Longo 1988; Gao et al. 2015;
Kahya & Desai 2016):

rt
c

U l dl
1

, 3
r

r

S 3
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where re and ro denote emission and observation positions,
respectively, rU ( ) is the gravitational potential, and the integral
is computed along the wave path. γ parametrizes a deviation
from the Einstein–Maxwell theory, which minimally couples
classical electromagnetism to general relativity. We allow for
different values of γ for the propagation of EM and GWs ( EMg
and GWg , respectively, with 1EM GWg g= = in the Einstein–
Maxwell theory).

While obtaining the best bound on the difference between
the Shapiro time delays requires modeling the potential rU ( )
along the entire line of sight, we determine a conservative
bound on GW EMg g- by considering only the effect of the
Milky Way outside a sphere of 100 kpc, and by using a
Keplerian potential with a mass of M2.5 1011´ : (the lowest
total mass within a sphere of radius 100 kpc quoted in Bland-
Hawthorn & Gerhard 2016, from Gibbons et al. 2014, taking
the 95% confidence lower bound) (Krauss & Tremaine 1988;
Longo 1988; Gao et al. 2015). Using the same time bounds as
Equation (1) we find

2.6 10 1.2 10 . 47
GW EM

6- -g g- ´ - ´- - ( )
The best absolute bound on EMg is 1 2.1 2.3EMg - = o ´( )
10 5- , from the measurement of the Shapiro delay (at radio
wavelengths) with the Cassini spacecraft (Bertotti et al. 2003).

5. Astrophysical Implications

The joint GW–GRB detection provides us with unprece-
dented information about the central engine of SGRBs. The
delay between the GW and the GRB trigger times allows us to
examine some basic GRB physics. This delay could be intrinsic
to the central engine, reflecting the time elapsed from the
moment the binary components come into contact to the
formation of a remnant BH and the resulting jet. This
interpretation includes the case of a relatively long-lived
massive NS remnant, which has been suggested to survive from
seconds to minutes after merger(see Faber & Rasio 2012;
Baiotti & Rezzolla 2017 and references therein). The delay
could also be due to the propagation time of the relativistic jet,

including the time it takes for the jet to break out of the dense
gaseous environment produced by non-relativistic merger
ejecta(Nagakura et al. 2014; Moharana & Piran 2017) and/
or the emitting region to become transparent to gamma-
rays(Mészáros & Rees 2000).
We first discuss the implications that the time delay between

the GW and EM emission has on the physical properties of the
emitting region when considering the jet propagation and
transparency scenarios. Here we assume that the entire delay is
due to the expansion of the emitting region and neglect any
intrinsic delays between the moment of binary coalescence and
the launching of the resulting jet, thus placing limits on the
physical properties of the system. Then we consider the impact
of SGRB emission from an NS merger on the EOS of dense
matter.

5.1. GRB Physics

The main hard peak observed for GRB170817A lasted
roughly half a second. This peak is consistent with a single
intrinsic emission episode as it is well described by a single
pulse (Goldstein et al. 2017), showing no evidence for
significant substructure (spikes). This interpretation is consis-
tent with the SPI-ACS observation of a single peak (Savchenko
et al. 2017b). The GBM detection of GRB170817A also
shows no evidence for photons with energy >511 keV,
implying that the outflow does not require a high bulk Lorentz
factor Γ to overcome photon–photon absorption at the source.
Explanations for the extreme energetics and short timescales

observed in GRBs invoke a near instantaneous release of a
large amount of energy in a compact volume of space(Goodman
1986; Paczynski 1986). This is commonly referred to as the
fireball model, and it is the framework that we will assume for
the remainder of this section. The fireball model is largely
independent of the burst progenitor and focuses on the dynamics
of such a system after this sudden release of energy. The
resulting pair-plasma is optically thick and quickly expands
under its own pressure to produce a highly relativistic outflow
that coasts asymptotically with a constant Lorentz factor
Γ. Within the fireball, kinetic energy is imparted to particles

Table 1
Constraints on the Dimensionless Minimal Gravity Sector Coefficients

ℓ Previous Lower This Work Lower Coefficient This Work Upper Previous Upper

0 −3×10−14 −2×10−14 s00
4( ) 5×10−15 8×10−5

1 −1×10−13 −3×10−14 s10
4( ) 7×10−15 7×10−14

−8×10−14 −1×10−14 sRe 11
4- ( ) 2×10−15 8×10−14

−7×10−14 −3×10−14 sIm 11
4( ) 7×10−15 9×10−14

2 −1×10−13 −4×10−14 s20
4- ( ) 8×10−15 7×10−14

−7×10−14 −1×10−14 sRe 21
4- ( ) 2×10−15 7×10−14

−5×10−14 −4×10−14 sIm 21
4( ) 8×10−15 8×10−14

−6×10−14 −1×10−14 sRe 22
4( ) 3×10−15 8×10−14

−7×10−14 −2×10−14 sIm 22
4- ( ) 4×10−15 7×10−14

Note. Constraints on the dimensionless minimal gravity sector coefficients obtained in this work via Equations (1) and (2) appear in columns 3 and 5. The
corresponding limits that predate this work and are reported in columns 2 and 6; all pre-existing limits are taken from Kostelecký & Tasson (2015), with the exception
of the upper limit on s00

4( ) from Shao (2014a, 2014b). The isotropic upper bound in the first line shows greater than 10 orders of magnitude improvement. The gravity
sector coefficients are constrained one at a time, by setting all other coefficients, including those from the EM sector, to zero.
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• Speed of gravity VS speed of light!

• Shapiro time delays

The 90% credible intervals(Veitch et al. 2015; Abbott et al.
2017e) for the component masses (in the m m1 2. convention)
are m M1.36, 2.261 Î :( ) and m M0.86, 1.362 Î :( ) , with total
mass M2.82 0.09

0.47
-
+

:, when considering dimensionless spins with

magnitudes up to 0.89 (high-spin prior, hereafter). When the
dimensionless spin prior is restricted to 0.05- (low-spin prior,
hereafter), the measured component masses are m 1.36,1 Î (

M1.60 :) and m M1.17, 1.362 Î :( ) , and the total mass is

Figure 2. Joint, multi-messenger detection of GW170817 and GRB170817A. Top: the summed GBM lightcurve for sodium iodide (NaI) detectors 1, 2, and 5 for
GRB170817A between 10 and 50 keV, matching the 100 ms time bins of the SPI-ACS data. The background estimate from Goldstein et al. (2016) is overlaid in red.
Second: the same as the top panel but in the 50–300 keV energy range. Third: the SPI-ACS lightcurve with the energy range starting approximately at 100 keV and
with a high energy limit of least 80 MeV. Bottom: the time-frequency map of GW170817 was obtained by coherently combining LIGO-Hanford and LIGO-
Livingston data. All times here are referenced to the GW170817 trigger time T0

GW.
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But wait, there’s more!



GW190521

• Component masses at  
 

 

• Not supposed to be there (pair-instability) 

• Is it really what we think it is?

m1 = 85+21
−14 M⊙ , m2 = 66+17

−18 M⊙

So massive…

coalescence rate [38]. The remnant of GW190521 fulfills
the above definition of an IMBH.
GW190521 was detected by searches for quasicircular

binary coalescences, and there is no evidence in the data for
significant departures from such a signal model. However,
for any transient with high inferred masses, there are few
cycles observable in ground-based detectors, and therefore
alternative signal models may also fit the data. This is
further addressed in the companion paper [39] that also
provides details about physical parameter estimation, and
the astrophysical implications of the observation of GWs
from this massive system.
Observation.—On May 21, 2019 at 03:02:29 UTC, the

LIGO Hanford (LHO), LIGO Livingston (LLO), and Virgo
observatories detected a coincident transient signal. A
matched-filter search for compact binary mergers,
PYCBC LIVE [40,41,42], reported the transient with a
network signal-to-noise ratio (SNR) of 14.5 and a false-
alarm rate of 1 in 8 yr, triggering the initial alert. Aweakly
modeled transient search based on coherent wave burst
(CWB) [43] in its IMBH search configuration [35] reported
a signal with a network SNR of 15.0 and a false-alarm rate
lower than 1 in 28 yr. Two other matched-filter pipelines,
SPIIR [44] and GSTLAL [45], found consistent candidates
albeit with higher false-alarm rates. The identification,
localization, and classification of the transient as a binary
BH merger were reported publicly within ≈6 min, with the
candidate name S190521g [46,47].

A second significant GW trigger occurred on the same
day at 07:43:59 UTC, S190521r [48]. Despite the short
time separation, the inferred sky positions of GW190521
and S190521r are disjointed at high confidence, and so the
events are not related by gravitational lensing. Further
discussions pertaining to gravitational lensing and
GW190521 are presented in the companion paper [39].
GW190521, shown in Fig. 1, is a short transient signal

with a duration of approximately 0.1 s and around four
cycles in the frequency band 30–80 Hz. A frequency of
60 Hz at the signal peak and the assumption that the source
is a compact binary merger imply a massive system.
Data.—The LIGO and Virgo strain data are conditioned

prior to their use in search pipelines and parameter
estimation analyses. During online calibration of the data
[53], narrow spectral features (lines) are subtracted using
auxiliary witness sensors. Specifically, we remove from the
data the 60 Hz U.S. mains power signature (LIGO), as well
as calibration lines (LIGO and Virgo) that are intentionally
injected into the detectors to measure the instruments’
responses. During online calibration of Virgo data, broad-
band noise in the 40–1000 Hz frequency range is subtracted
from the data [54]. The noise-subtracted data produced by
the online calibration pipelines are used by online search
pipelines and initial parameter estimation analyses.
Subsequent to the subtraction conducted within the

online calibration pipeline, we perform a secondary offline
subtraction [55] on the LIGO data with the goal of

FIG. 1. The GW event GW190521 observed by the LIGO Hanford (left), LIGO Livingston (middle), and Virgo (right) detectors.
Times are shown relative to May 21, 2019 at 03:02:29 UTC. The top row displays the time-domain detector data after whitening by each
instrument’s noise amplitude spectral density (light blue lines); the point estimate waveform from the CWB search [43] (black lines); the
90% credible intervals from the posterior probability density functions of the waveform time series, obtained via Bayesian inference
(LALINFERENCE [49]) with the NRSur7dq4 binary BH waveform model [50] (orange bands), and with a generic wavelet model
(BayesWave [51], purple bands). The ordinate axes are in units of noise standard deviations. The bottom row displays the time-
frequency representation of the whitened data using the Q transform [52].
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GW190814

• High mass-ratio binary 

• Secondary mass at ∼ 3 − 5 M⊙

What is it?



Can’t wait for O4!
…and Einstein Telescope 

…and O3b 

…and Cosmic Explorer
…and LISA

…


