

Solving scientific model comparison with Evidence Networks

Niall Jeffrey

ArXiv:2305.11241 (co-author Ben Wandelt)

Likelihood-free result....

NJ, Alsing, Lanusse 2009.08459

Dark Energy Survey SV data

Posterior probability for unknown parameters

Outline

- Challenge of model comparison
- Evidence Networks
- Demonstration highlights:
 - Time-series data
 - DES data
- Extensions and applications

The challenge of model comparison

The challenge of model comparison

$$p(M_1|x)$$
 vs $p(M_0|x)$

'Bayes factor': $K = \frac{p(x_O|M_1)}{p(x_O|M_0)}$

What do people usually do?

Marginal likelihood:

$$p(x_O|M_1) = \int p(x_O|\theta, M_1) \ p(\theta|M_1) \ d\theta$$

Evidence Networks

Evidence Networks

- 1.Generate/collect data for each model: $x_i \sim p(x \mid M_1)$
- 2. Bespoke loss function: $\mathcal{V}(f(x), m)$
- 3. Simple network to estimate Bayes factor: $f^*(x_O) = \log K$

How does this work?

$$\mathcal{V}(f(x), m) = e^{(\frac{1}{2} - m)f(x)}$$

$$m \in \{0,1\}$$
 \uparrow

model label

How does this work?

$$\mathcal{V}(f(x), m) = e^{(\frac{1}{2} - m)f(x)}$$

$$f^*(x_O) = \log K$$

How does this work?

$$\mathcal{V}(f(x), m) = e^{(\frac{1}{2} - m)\mathcal{J}_{\alpha}(f(x))}$$

leaky parity odd power (l-POP) transform

Evidence Network demonstration highlights

Model 1: Linear growth term

Model 2: No growth term

Versus alternative methods

- 1. Evidence Nets can work if alternatives intractable
- 2. More accurate than SOTA Nested Sampling with only 1% of the likelihood evaluations/samples
- 3. Accuracy 10x than neural density $p(x | M_1)$ ratios

Dark Energy Survey data application

Model 1: galaxies are intrinsically aligned

Simple Evidence Network result:

$$\log_{10} K = -0.8 \ (\pm 0.3)$$

Bonus section! Extensions and intuition

- Extensions:
 - * Absolute evidence calculation
 - * Frequentist hypothesis testing
 - * Posterior predictive testing

Pedagogical Example: Rastrigin Posterior

Pedagogical Example: Rastrigin Posterior

$$p(\theta_1, \theta_2 | x)$$

Evidence Networks: Extensions and applications

- Extensions:
 - * Absolute evidence calculation
 - * Frequentist hypothesis testing
 - * Posterior predictive testing
- Fast, accurate, simple and work with previously intractable problems
- Which of your model comparison problems do you want to solve?

ArXiv: 2305.11241