Solving scientific model comparison with Evidence Networks

Niall Jeffrey

ArXiv:2305.11241
(co-author Ben Wandelt)

Likelihood-free result...

NJ, Alsing, Lanusse 2009.08459

Dark Energy Survey SV data

Posterior probability for unknown parameters

Outline

- Challenge of model comparison
- Evidence Networks
- Demonstration highlights:
- Time-series data
- DES data
- Extensions and applications

The challenge of model comparison

The challenge of model comparison

$$
p\left(M_{1} \mid x\right) \text { vs } p\left(M_{0} \mid x\right)
$$

'Bayes factor': $\quad K=\frac{p\left(x_{O} \mid M_{1}\right)}{p\left(x_{O} \mid M_{0}\right)}$

Marginal likelihood:

$$
p\left(x_{O} \mid M_{1}\right)=\int p\left(x_{O} \mid \theta, M_{1}\right) p\left(\theta \mid M_{1}\right) \mathrm{d} \theta
$$

Evidence Networks

Evidence Networks

1.Generate/collect data for each model: $x_{i} \sim p\left(x \mid M_{1}\right)$
2.Bespoke loss function: $\mathscr{V}(f(x), m)$
3. Simple network to estimate Bayes factor: $f^{*}\left(x_{O}\right)=\log K$

$$
\mathcal{V}(f(x), m)=e^{\left(\frac{1}{2}-m\right) f(x)}
$$

$$
\mathcal{V}(f(x), m)=e^{\left(\frac{1}{2}-m\right) f(x)}
$$

$$
f^{*}\left(x_{O}\right)=\log K
$$

$$
\mathcal{V}(f(x), m)=e^{\left(\frac{1}{2}-m\right) \mathcal{J}_{\alpha}(f(x))}
$$

Evidence Network

demonstration highlights

Model 1: Linear growth term Model 2: No growth term

100 parameters, $\mathrm{RMSE}=0.017$

Model posterior blind coverage test

Versus alternative methods

1. Evidence Nets can work if alternatives intractable
2. More accurate than SOTA Nested Sampling with only 1% of the likelihood evaluations/samples
3. Accuracy $10 x$ than neural density $p\left(x \mid M_{1}\right)$ ratios

Time series example: varying dimensionality

Residual error: $\left(\log _{10} K\right)_{\text {Estimate }}-\left(\log _{10} K\right)_{\text {Analytic }}$

Dark Energy Survey data application

Model 1: galaxies are intrinsically aligned

Simple Evidence Network result:

$$
\log _{10} K=-0.8(\pm 0.3)
$$

Bonus section!

Extensions and intuition

- Extensions:
* Absolute evidence calculation
* Frequentist hypothesis testing
* Posterior predictive testing

Pedagogical Example: Rastrigin Posterior

Pedagogical Example: Rastrigin Posterior

$$
p\left(\theta_{1}, \theta_{2} \mid x\right)
$$

Evidence Networks: Extensions and applications

- Extensions:
* Absolute evidence calculation
* Frequentist hypothesis testing
* Posterior predictive testing
- Fast, accurate, simple and work with previously intractable problems
- Which of your model comparison problems do you want to solve?

