

Antenna design for a Global 21 cm experiment: REACH

John Cumner

The REACH approach

- Priority to understand all parts of the system.
- Compensate for systematics present
- Inbuilding analysis pipeline into design process

RFACH

Antenna temperature

Figures of Merit approach

- Quantifiable values for the most important aspects of the antenna:
 - Beam chromaticity (σ)
 - Antenna impedance $(\alpha, \beta, \gamma, \delta)$
 - Mock data analysis pipeline
- Other less quantifiable considerations:
 - Ease of building
 - Ease of modelling computationally

Prototype REACH antenna design, July 2020

Mozdzen et al. 2017, 2019

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

Proper scaling explanation

Candidate antennas

MONOPOLE

BROADBAND DIPOLE

Elliptical Dipole

Trapezoidal Dipole

APERTURE / HORN

Corrugated

Horn

Rectangular

Horn

Rect. Horn (2 Walls)

Planar Spiral

Conical Spiral

TEM Corr.

Horn

Pyramidal Sinuous

Conical Sinuous

Candidate selection

- Conical log spiral and blade dipole best in mock detection pipeline performance
- Significantly easier to construct and model the dipole than conical log spiral type

Reconstructed signal for a blade dipole antenna

Parameter variation & sampling

- 14 Parameters:
 - 7 blade points
 - 4 balun structure
 - Distance between blades
 - Ground plane radius
 - Antenna height

Twinline radius	
Short height Stub length	

REACH

$$\Psi = \sqrt{W_{\sigma}\Phi_{\sigma}^2 + W_{\alpha}\Phi_{\alpha}^2 + W_{\beta}\Phi_{\beta}^2 + W_{\gamma}\Phi_{\gamma}^2 + W_{\delta}\Phi_{\delta}^2}$$

Here refitted with a sum of 14, 6th order polynomials (one per parameter)

First prototype

CST model

Prototype on the roof of Stellenbosh University

Simulation verification

- Initial verification of simulation and construction methods.
- Extra 250mm transmission line added to the simulation

REACH

What next? Antenna beam uncertainties

- Assumed CST produces field accurate models for beam directivity
- Is this accurate?
- How can we mitigate it?

