Harnessing Tailored Statistical Techniques to Discover Star Clusters

KICC Focus Meeting on Astrostatistics \& Astro-ML
Rafael S. de Souza
Chair: The Cosmostatistics Initiative University of Hertfordshire

Astrophysic̄al Outline

- Why Star Clusters?
- The Old \& The Young
- Optimizing discoveries
- How star clusters can map the galaxy and beyond
- Missing data imputation
- Low-rank Heteroskedastic data-denoising
- GPU Scalability
- And old-school Hierarchical Bayesian Models

Types of Star Clusters

- Young stellar objects clusters
- Offers a glimpse into early star and planet formation processes.
- They are independent tracers of the galactic spiral arms structure.
- Open Clusters (OCs)
- Comprised of stars of mixed ages and higher metallicity, OCs map galactic chemical enrichment.
- Their location helps tracing the galaxy's spiral structure and star formation history.
- Globular Clusters (GCs)
- Old, metal-poor stars, they are relics of the early Universe, shedding light on the formation and evolution of the Milky Way.
- Their dynamics provide constraints on dark matter.

Mapping Young Stellar Objects in the Milky Way

- YSOs live in regions of intense star formation.
- They enable to map of the galactic structure. Because they are close to the place they are born.
- Challenge is to identify them among 10^{8-9} objects observed by the Gaia space mission. With upcoming surveys, those numbers will be at least ten times larger

Mapping Young Stellar Objects in the Milky Way

- YSOs live in regions of intense star formation
- They enable to map of the galactic structure. Because they are close to the place they are born.
> - Challenge is to identify them among 10^{8-9} objects observed by the Gaia space mission. With upcoming surveys, those numbers will be at least ten times larger

b Arches, $\mathrm{T}=2-3 \mathrm{My}$

magesof a nage of a

 a/webdu. Mberwasice: ONC, Orice Niteli Oluter.

Mapp̄ing Young Stellar Objects in the Milky Way

- YSOs live in regions of intense star formation
- They enable to map of the galactic structure. Because thev are close to the place they are born.
- Challenge is to identify them among 10^{8-9} objects observed by the Gaia space mission. With upcoming surveys, those numbers will be at least ten times larger.

f NCC OS3S. $7>10 \mathrm{Gm}$

h ncci 1232 Fatanem

mages of a nage of wil doum, aheg viak

 elweebde. Aberwasice: ONC, Orice Nibll Cluser.

YSO data: Spectral Energy Distributión

generate YSO and non-YSO training sets by crossmatching with previous studies
copula imputation of missing data; MCMC using SBGCOP (Hoff 2018)

First issue: Missing data

- Most off-the-shelf approaches assume missingness at random:
- An alternative is to learn the joint distribution from the complete data, which often requires assumptions about the joint density

First issue: Missing data

- Astronomical data shows non-trivial missing patterns

- How can we take advantage of the data's correlated structure for arbitrary marginal distributions?

Multiple Imputation via Copulas

Sklar's Theorem: Let F be a p-dimensional joint distribution function with marginals F_{1}, \ldots, F_{p}. Then there exists a copula C with uniform marginals such that

$$
F\left(x_{1}, \ldots, x_{p}\right)=C\left(F_{1}\left(x_{1}\right), \ldots, F_{p}\left(x_{p}\right)\right)
$$

MIGAN employs a self-attention mechanism, which learns a sparse representation of the relevant features for a given task (de Souza et al, in prep). Initially used for images, can be adapted to Astronomical catalogues.

: Multiple Imputation via Genērative Adversariat Networks

MIGAN employs a self-attention mechanism, which learns a non-local sparse representation of the data.

The MICE Algorithm

Missing data is in red. There is a strong correlation between A and B, so let's try to impute A using B and C.

A	B	C
0.93	1.40	1.53
0.24	0.46	0.76
	0.80	
0.95	1.24	1.46
0.23	0.57	
0.90		1.28
0.15	0.42	
0.47	0.54	0.63
	1.14	
0.89	1.23	1.45

Missing data is filled in randomly. This dillutes the correlations, but allows us to impute using all available data.

A	B	C
0.93	1.40	1.53
0.24	0.46	0.76
0.90	0.80	1.53
0.95	1.24	1.46
0.23	0.57	1.28
0.90	0.46	1.28
0.15	0.42	1.53
0.47	0.54	0.63
0.47	1.14	1.28
0.89	1.23	1.45

A random forest is used to predict A with B and C. Notice the correlation between A and B improved.

\mathbf{A}	B	C
0.93	1.40	1.53
0.24	0.46	0.76
0.24	0.80	1.53
0.95	1.24	1.46
0.23	0.57	1.28
0.90	0.46	1.28
0.15	0.42	1.53
0.47	0.54	0.63
0.89	1.14	1.28
0.89	1.23	1.45

After Imputing B using A and C , we
have achieved a correlation
between A and B much closer to the original data.

\mathbf{A}	B	C
0.93	1.40	1.53
0.24	0.46	0.76
0.24	0.80	1.53
0.95	1.24	1.46
0.23	0.57	1.28
0.90	1.24	1.28
0.15	0.42	1.53
0.47	0.54	0.63
0.89	1.14	1.28
0.89	1.23	1.45

MIGAN also enables to user to mimic a particular model of choice as e.g. Multiple Imputation via Chained Equations.

~ 50 million mid-IR sources
117,446 YSO candidates
"traditional" SED fitting to weed out reddened stars
generate YSO and non-YSO training sets by crossmatching with previous studies
copula imputation of missing data; MCMC using SBGCOP (Hoff 2018)

The SPitzer/IRAC Candidate YSO Catatog

The largest catalogue of YSOs ($\sim 200,000$) in the Milky Way midplane

For star i of a cluster, the probability distribution is,

$$
\begin{aligned}
& p_{\text {clust }}\left(\varpi_{i}, \mu_{\ell^{\star}, i}, \mu_{b, i} \mid \varpi_{0}, \mu_{\ell^{\star}, 0}, \mu_{b, 0}\right)= \\
& \phi\left(\varpi_{i} \mid \varpi_{0}, \sigma_{\varpi_{i}}^{2}\right) \cdot f\left(\mu_{\ell^{\star}, i} \mid \mu_{\ell^{\star}, 0}, \sigma_{\mu_{\ell^{\star}, 0}}^{2}, \nu_{\mu}\right) . \\
& f\left(\mu_{b, i} \mid \mu_{b, 0}, \sigma_{\mu_{b, 0}}^{2}, \nu_{\mu}\right)
\end{aligned}
$$

where $\theta=\left(\varpi_{0}, \mu_{\ell^{\star}, 0}, \mu_{b, 0}\right)$ are the mean astrometric values for the cluster, $x_{i}=\left(\varpi_{i}, \mu_{\ell^{\star}, i}, \mu_{b, i}\right)$ are the measured values for the ith star, σ_{i} are corresponding uncertainties, ϕ denotes a Gaussian distribution, and f denotes a
 t-distribution.

- YSOs are independent tracers of Spiral Arm Structure

- Mapping the STpirāl Arms with YSOs-

- We have identified a new structure near the Sagittarius arm

- Mapping the STpirāl Arms with YSOs-

- We then compared it with other independent tracers such as dust maps and masers to confirm the structure was not an artifact

- Our analysis provided the first evidence of a high-pitch angle structure in the galactic spiral arms

Astronomers Find a 'Break' in One of the Milky Way's Spiral Arms

SPICY byproducts

©SPICY

- Hundreds of thousands Light-curves (Time-Series)
- The light curve of Gaia23bab (=SPICY 97589) suggests the presence of an accretion outburst.
- These still scarce class of objects play a significant role in our understanding of star and planetary system formation.

- 117,224 stamps of star forming regions
\rightarrow Computer vision
\rightarrow Fourier and Wavelets Analysis
\rightarrow Marked Point Process

Environment I

Spicy 62787

ShCr 45390

SPRCY 101260

Seärching for Extragalā̀ctic Globūlar Clusters

- Approximate figures
- Dwarf galaxies: 0-10 GCs
- Disk Galaxies 10s - 100s GCs
- Elliptical Galaxies 100s - 10k GCs
- Unsurprisingly GCs are usually targeted around E/SO galaxies, because of large numbers and easier detection

Seärching for Extragalāctic Globülar Clusters

Seärching for Extragalāctic Globülar Clusters

- Data from S-PLUS - a ongoing survey mapping about 9300 square degrees of the southern sky with an optical 12-bands.
- The figure shows a typical GC SED and Spectra

Phōtometric Selectioñ - 7.2K point sources

- A traditional GC selection would apply color-magnitude cuts around regions of known GCs

Phōtometric Selectioñ - 7.2K point sources

- Going a bit further, we can just apply a Principal Components Analysis

Phōtometric Selectioñ - 7.2K point sources

- But what about handling heteroskedastic errors with known variance?
- Off-the-shelf packages often don't account for errors in measurements

RNAAS RESEARCH NOTES OF THE AAS

OPEN ACCESS

Yonder: A Python Package for Data Denoising and Reconstruction

Peng Chen (慗瑘) ${ }^{1}$ and Rafael S. de Souza ${ }^{2}$ (9)
Published March 2022 - © 2022. The Author(s). Published by the American Astronomical Society.
Ressarch Notes of the AAS, Yolume 6. Number 3
Citation Peng Chen and Rafeel S. de Souza 2022 Res. Notes AAS 651

Figures * References -

- Uncertainty aware PCA
- Data-denoising

Full length article
qrpca: A package for fast principal component analysis with GPU acceleration
R. S. de Souza "*, X. Quameng',S. Shen ", C. Peng ", Z Mu

us sowtrone do

- I was somewhat dissatisfied with the standard Python and R implementations of PCA, particularly when applied to IFUs (data cubes).
- I developed a QR-based PCA package.

Full length article
qrpca: A package for fast principal component analysis with GPU acceleration
R. S. de Souza ", X. Quanieng', S. Shen ", C. Peng ", Z Mu*

- It utilizes Torch and Pytorch for GPU acceleration.
- QRPCA behaves similarly to standard implementations in R and python
- It is $10-20 \times$ faster then sklearn and prcomp

- After employing our customized pre-processing, including imputation, denoising, proper motion cuts, and a propensity score matching, we compiled an initial list of 640 GC candidates out of 7 k sources.

Back to Exträgalactic GCs

- The first compilation of extragalactic GCs around the triplet.
- In the figure orange stands for GCs with lower proper motions, while cyans are higher in comparision to the known GC.
- We are systematically performing spectroscopic follow-up, which has borne fruit so far

- An analysis of their spatial distribution suggests possible evidence for a bridge between M81 and M82, which is currently under investigation

