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;
Astrophysical Outline

• Why Star Clusters?
• The Old & The Young
• Optimizing discoveries
• How star clusters can map the galaxy and beyond

2 / 22



;

Methodological Outline
Some tailored solutions for everyday statistical problems

• Missing data imputation
• Low-rank Heteroskedastic data-denoising
• GPU Scalability
• And old-school Hierarchical Bayesian Models
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;
Types of Star Clusters

• Young stellar objects clusters
▶ Offers a glimpse into early star and planet formation processes.
▶ They are independent tracers of the galactic spiral arms structure.

• Open Clusters (OCs)
▶ Comprised of stars of mixed ages and higher metallicity, OCs map galactic

chemical enrichment.
▶ Their location helps tracing the galaxy’s spiral structure and star formation

history.
• Globular Clusters (GCs)

▶ Old, metal-poor stars, they are relics of the early Universe, shedding light on the
formation and evolution of the Milky Way.

▶ Their dynamics provide constraints on dark matter.
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;
Mapping Young Stellar Objects in the Milky Way

• YSOs live in regions of intense star
formation.

• They enable to map of the galactic
structure. Because they are close to the
place they are born.

• Challenge is to identify them among
108−9 objects observed by the Gaia space
mission. With upcoming surveys, those
numbers will be at least ten times larger.
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;
YSO data: Spectral Energy Distribution
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;
First issue: Missing data

• Most off-the-shelf approaches assume
missingness at random:

• An alternative is to learn the joint
distribution from the complete data,
which often requires assumptions
about the joint density
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;
First issue: Missing data

• Astronomical data shows non-trivial
missing patterns
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;
First issue: Missing data

• How can we take advantage of the
data’s correlated structure for arbitrary
marginal distributions?
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;
Multiple Imputation via Copulas

Sklar’s Theorem: Let F be a p-dimensional joint distribution function with marginals
F1, . . . ,Fp . Then there exists a copula C with uniform marginals such that

F (x1, . . . , xp) = C (F1(x1), . . . ,Fp(xp))
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;
Multiple Imputation via Generative Adversarial Networks

MIGAN employs a self-attention mechanism, which learns a sparse representation
of the relevant features for a given task (de Souza et al, in prep). Initially used for
images, can be adapted to Astronomical catalogues.
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;
Multiple Imputation via Generative Adversarial Networks

MIGAN employs a self-attention mechanism, which learns a non-local sparse
representation of the data.
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;
The MICE Algorithm
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;
MIGAN as Emulator

MIGAN also enables to user to mimic a particular model of choice as e.g. Multiple
Imputation via Chained Equations.
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;
YSO search pipeline
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;
The SPitzer/IRAC Candidate YSO Catalog

The largest catalogue of YSOs (∼ 200,000) in the Milky Way midplane
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;
For each YSO association

For star i of a cluster, the probability distribution
is,

pclust(ϖi , µℓ⋆,i , µb,i |ϖ0, µℓ⋆,0, µb,0) =

ϕ(ϖi |ϖ0, σ
2
ϖi
) · f (µℓ⋆,i |µℓ⋆,0, σ

2
µℓ⋆,0

, νµ)·

f (µb,i |µb,0, σ
2
µb,0

, νµ),

where θ = (ϖ0, µℓ⋆,0, µb,0) are the mean
astrometric values for the cluster,
xi = (ϖi , µℓ⋆,i , µb,i ) are the measured values for
the ith star, σi are corresponding uncertainties, ϕ
denotes a Gaussian distribution, and f denotes a
t-distribution.
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;
Mapping the Spiral Arms with YSOs

• YSOs are independent tracers of
Spiral Arm Structure
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;
Mapping the Spiral Arms with YSOs

• We have identified a new
structure near the Sagittarius
arm
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;
Mapping the Spiral Arms with YSOs

• We then compared it with other
independent tracers such as dust
maps and masers to confirm the
structure was not an artifact
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;
Mapping the Spiral Arms with YSOs

• Our analysis provided the first
evidence of a high-pitch angle
structure in the galactic spiral
arms
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;
SPICY byproducts

• Hundreds of thousands Light-curves
(Time-Series)

• The light curve of Gaia23bab (=SPICY
97589) suggests the presence of an
accretion outburst.

• These still scarce class of objects play a
significant role in our understanding of
star and planetary system formation.
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;
SPICY byproducts

• 117,224 stamps of star forming regions
: Computer vision
: Fourier and Wavelets Analysis
: Marked Point Process
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;
Searching for Extragalactic Globular Clusters

• Approximate figures
• Dwarf galaxies: 0 - 10 GCs
• Disk Galaxies 10s - 100s GCs
• Elliptical Galaxies 100s - 10k
GCs

• Unsurprisingly GCs are usually
targeted around E/S0 galaxies,
because of large numbers and
easier detection
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;
Searching for Extragalactic Globular Clusters

• To help mitigate this bias, we
start a campaign to search for
GCs around Spirals

• Only 105 confirmed GCs around
the region (spectroscopic + HST
data)
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;
Searching for Extragalactic Globular Clusters

• Data from S-PLUS - a ongoing
survey mapping about 9300
square degrees of the southern
sky with an optical 12-bands.

• The figure shows a typical GC
SED and Spectra
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;
Photometric Selection - 7.2K point sources

• A traditional GC selection would
apply color-magnitude cuts
around regions of known GCs
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;
Photometric Selection - 7.2K point sources

• Going a bit further, we can just
apply a Principal Components
Analysis
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;
Photometric Selection - 7.2K point sources

• But what about handling
heteroskedastic errors with
known variance?

• Off-the-shelf packages often
don’t account for errors in
measurements

◉
◉

◉

★

★

◉

★

◉
◉
◉
◉

◉

◉

◉◉

◉

★

◉◉
◉

◉

★

◉
★

◉

★
◉◉ ◉

★

◉

◉★

★
◉

◉

-2

-1

0

1

2

3

-10 -5 0 5
PC1

PC
2

-0.3

-0.2

-0.1

0.3 0.6 0.9
PC1

PC
2

19 / 22



;
Yonder: Low-rank data denoising

• Uncertainty aware PCA
• Data-denoising
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;
PCA Scalability

• I was somewhat dissatisfied with the
standard Python and R implementations
of PCA, particularly when applied to IFUs
(data cubes).

• I developed a QR-based PCA package.
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;
PCA Scalability

qrpca GPU
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• It utilizes Torch and Pytorch for GPU
acceleration.

• QRPCA behaves similarly to standard
implementations in R and python

• It is 10-20× faster then sklearn and
prcomp
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;
Back to Extragalactic GCs

• After employing our customized
pre-processing, including imputation,
denoising, proper motion cuts, and a
propensity score matching, we
compiled an initial list of 640 GC
candidates out of 7k sources.
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;
Back to Extragalactic GCs

• The first compilation of extragalactic
GCs around the triplet.

• In the figure orange stands for GCs
with lower proper motions, while
cyans are higher in comparision to
the known GC.

• We are systematically performing
spectroscopic follow-up, which has
borne fruit so far
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;
Back to Extragalactic GCs

• An analysis of their spatial
distribution suggests possible
evidence for a bridge between M81
and M82, which is currently under
investigation
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