

Joint astrophysical constraints on 21-cm models with multiwavelength observations

Simon Pochinda (sp2053@cam.ac.uk)

Cavendish Radio Cosmology

Motivation

- Uncharted Dark Ages, Cosmic Dawn, and Epoch of Reionization
- 21-cm line of neutral hydrogen
- Wealth of 21-cm data from upcoming experiments.
- Jointly inferring astrophysical parameters using probes across the entire electromagnetic spectrum.

What is the 21-cm line?

Relative population of hyperfine states defined by

$$\frac{n_1}{n_0} = 3 \exp\left(\frac{T_*}{T_S}\right).$$

Interested in the brightness temperature contrast to the CMB

$$T_{21} = \delta T_b = \frac{T_S - T_{\gamma}}{1 + z} (1 - e^{-\tau_{21}}).$$

 Spin temperature – collisional coupling, radiative coupling, WF effect (Furlanetto+2006)

21 cm experiments

Multiwavelength data

 Table 1. Cosmic X-ray Background

Data set	$S \ [\mathrm{erg} \ \mathrm{cm}^{-2} \ \mathrm{s}^{-1} \ \mathrm{deg}^{-2}]$
(1)	(2)
Hickox & Markevitch (2006), $1 - 2 \text{ keV}$ Hickox & Markevitch (2006), $2 - 8 \text{ keV}$ Harrison et al. (2016), $8 - 24 \text{ keV}$ Harrison et al. (2016), $20 - 50 \text{ keV}$	$\begin{array}{l} (1.04\pm0.14)\times10^{-12}\\ (3.4\pm1.7)\times10^{-12}\\ (1.832\pm0.042)\times10^{-11}\\ (2.0\pm0.083)\times10^{-11} \end{array}$

Semi-numerical 21-cm models

- Goal: Simulate the 21-cm brightness temperature (Fialkov et al., Gessey-Jones+2023 for a review)
- Initial conditions
 - Evolve density and velocity field from CAMB
 - Gas temperature and ionization fraction from RECFAST
- Parameterized star formation and emission
 - Free parameters: $f_{\text{star,II}}$, $f_{\text{star,III}}$, V_c , f_X , α_X , $\nu_{X,\min}$, τ , f_{Radio} , pop
- Advantage: Faster than full N-body simulations. But still too slow...

Thomas Gessey-Jones

Training emulators

- Train emulator to learn simulation quantities (Δ_{21}^2 , SFR, X-ray background, and T_{21})
- Emulations in O(1 ms)
- Global signal emulator: globalemu

Harry Bevins

Stefan Heimersheim

Explicit parameter inference

Nested sampling with Polychord

• Upper limit likelihood on for Δ_{21}^2 , T_{Radio} and the CXB

• Gaussian likelihood for the global signal, T_{21} .

• Joint likelihood:

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\Delta_{21}^2,\text{HERA}} \times \mathcal{L}_{\text{CXB}} \times \mathcal{L}_{T_{\text{Radio}}} \times \mathcal{L}_{\text{SARAS3}}.$$

Parameter constraints

Constraints on the X-ray efficiency

- Chandra excludes high f_X models that exceed the X-ray background upper limits
- HERA IDR2 disfavours low f_X and high f_r , as these models produce high power spectra
- SARAS3 same as HERA. Low f_X and high f_r produce models deeper than the observations (new)

— SARAS3

New constraints from SARAS3

- New models produce deeper signals
- High f_X and low f_r constrained by new models.

Which observational data set provides the best constraints?

- Marginalize nuisance foreground parameters
- Train normalizing flows with margarine to compute marginal Bayesian statistics

Conclusions

- Combining measurements of the Cosmic X-ray Background with 21 cm data reveal a tighter constraint on the X-ray efficiency
- The new Pop III to Pop II star formation prescription provides new constraints on the X-ray efficiency with the SARAS3 data
- Joint constraints from multiwavelength observations provide a stronger upper limit on the radio efficiency of galaxies, and constrains star formation efficiencies.
- With better observations we will likely be able to provide constraints on Pop III properties with the new models.

