Antenna beam characterisation for the global 21cm experiment LEDA and its impact on signal model parameter reconstruction

REACH workshop - Cambridge -13 April 2022

Marta Spinelli with Kyriakou, Bernardi, Bolli, Greenhill, Fialkov, Garsden

LEDA Large-aperture Experiment to detect the Dark Ages

- outriggers of LWA stations at Owens Valley Radio Observatory
- main analysis: 254 and 252 E-W orientation (polarization A)
- frequency range: 30-87 MHz
- instrument overview, RFI flagging and calibration: Price et al. (2018)

LEDA observations

- 137 *days*: Dec 2018 to May 2019 (+ May 2018)
- best window: *night-time* (less RFI and ionospheric disturbance) and *avoid* galactic plane (less chromaticity)
- Dec/Jan (dry soil)
- analysis in Spinelli et al. (2021)
- analytic beam simulations

Improving the beam: soil modelling

analytic beam (Dowell 2011) \Rightarrow FEKO

used 2018/2019 available measurements for both dry and wet conditions and multi-layer approach

- estimated value of complex permittivity from LWA team (one-layer)
- three accurate measurement at different depths (three-layers)
- iterative procedure to reach convergence linearly interpolating soil parameters between previous step layers (converged)

Soil layer parameters (σ in S/m, ϵ_r dimensionless)				
	$\sigma_{ m dry}$	$\sigma_{ m wet}$	$\epsilon_{r, dry}$	$\epsilon_{r,\mathrm{wet}}$
one layer	0.004	0.01	4.4	6.5
three-layer 1	0.0013	0.005	3.73	8.09
three-layer 2	0.004	0.0068	4.25	6.45
three-layer 3	0.0187	0.0388	7.58	20.56

Improving the beam: ground planes

- data collected with three different ground planes: 3×3 , 10×10 , and 10×10 serrated
- Δ Gain wrt infinite ground plane
- higher frequency oscillations for larger ground planes (as expected)
- $\bullet\,$ serrated worse than standard $20\times20\,$
- peculiarity of LWA antennas?

Beam pattern

Mock sky spectra

• sky model (Haslam scaled):

$$\left[T_{\rm H}(\Omega) - T_{\rm cmb}\right] \left(\frac{\nu}{408}\right)^{\beta} + T_{\rm cmb}$$

• observed temperature

$$T_{\rm obs}(\nu) = \frac{\int_{\Omega} T_{\rm sky}(\nu,\Omega) B(\nu,\Omega) d\Omega}{\int_{\Omega} B(\nu,\Omega) d\Omega}$$

• beam model:

baseline (one-layer, dry condition $3\times3)$

• assume available LEDA data (thermal) noise level and LST range

Foreground smoothness

- LST range matters
- N=6 ok for infinite ground plane

- 3×3 shows structured residuals
- increasing N does not help much

Bayesian analysis

- N.term log-polynomial modeling of the foregrounds
- simple Gaussian signal added
- bayesian exploration of the posterior (MultiNest)

infinite ground plane is not a problem

reconstruction compromised for the 3×3 ground plane

reconstruction failed for the larger ground planes

Chromaticity correction

$$B_{\rm c}(\nu) = \frac{\int_{\Omega} T_{\rm sky}(\nu_0, \Omega) B(\nu, \Omega) d\Omega}{\int_{\Omega} T_{\rm sky}(\nu_0, \Omega) B(\nu_0, \Omega) d\Omega}$$

Mozdzen et. al 2017,2019

- chromaticity correction with the exact B gives smooth spectra
- absorption feature reconstructed with a few mK residuals (with MCMC)

what about the uncertainties on the beam?

Dry vs wet conditions

- generate mock data with baseline beam (one-layer, dry condition)
- correct for chromaticity with another beam model
- what happens if one assumes wet soil condition instead of dry?

larger ground planes do not attenuate the effect of soil electromagnetic properties

Small soil moisture variations

- generate mock data with baseline beam (one-layer, dry condition)
- correct for chromaticity with another beam model
- and if conductivity and permittivity are changed only slightly?

bias can be as large as a factor $\times 2$ even for this small variations

Multi-layer modelling

- generate mock data with baseline beam (one-layer, dry condition)
- correct for chromaticity with another beam model
- what is the effect of the multi-layer approach?

bias increases for larger ground planes

Conclusions

- LEDA data are an important test ground for future 21cm global signal analysis and need to be understood properly
- trends in the data seems to correlate with rains: is the soil moisture important?
- improved beam characterization using FEKO: change electromagnetic properties of the soil and its modelling, study the different ground planes
- how much beam uncertainties can impact the result? non negligible effect
- what about a more sophisticated pipeline (REACH)?

Effect on the spectral index

Input dependence

- baseline for this analysis
- $\bullet\,$ same as before but different ν_0
- EDGES-like absorption feature

Old beam model

$$A(\nu,\theta,\phi) = \sqrt{[p_E(\nu,\theta)cos\phi]^2 + [p_H(\nu,\theta)sin\phi]^2}$$

Taylor et al. (2012), Ellingson et al. (2013), Dowell (2011)

$$\begin{split} p_i(\nu,\theta) &= [1 - (\frac{\theta}{\pi/2})^{\alpha_i(\nu)}](\cos\theta)^{\beta_i(\nu)} + \\ \gamma_i(\nu)(\frac{\theta}{\pi/2})(\cos\theta)^{\gamma_i(\nu)} \end{split}$$

 α, β, γ, δ described with a 13th order polynomial Dowell (2011).

