Unravelling the Nature of Dark Matter

with: Matteo Viel, Martin Haehnelt, James Bolton, Margherita Molaro

Small-scales ($< 1 \; \mathrm{Mpc/h}$)

Testing Dark Matter models

- · Relative suppression Of small-scale clustering
- ROBUST CONSTRAINTS
 FOR VARIETY OF MODELS
 COOKING FOR a feature!

Effect of nCDM is larger on small-scales

 The typical scale imprinted By nCDM is on smaller scales for heavier particle masses.

Effect of nCDM is larger at higher redshifts

- Nonlinear evolution is stronger at lower redshifts
- Relative effect of Baryons (Doppler Broadening, pressure smoothing) is weaker at higher redshift.

non-CDM erases small scale structure

Warm Dark Matter (WDM):

Free-streaming Of DM particles (From the time they decouple until they become non-relativistic) Fuzzy Dark Matter (FDM):

Jeans scale Of ultra-light DM scalar

$$k_{J,\text{eq}} = 9 \left(\frac{m_{\text{FDM}}}{10^{-22} \text{ eV}} \right)^{1/2} \text{ Mpc}^{-1}$$

Nonlinear soliton solutions $\sim \rm kpc$

\implies erases small scale structure

Typical nCDM particle mass from local small-scale structure
$$\begin{split} m_{\rm WDM} &\sim 2-3 \ {\rm keV} \\ m_{\rm FDM} &\sim 1-10 \ \times \ 10^{-22} \ {\rm eV} \end{split}$$

Baysian Likelihood Analysis

• Simulation Based likelihood (Likelihood-free inference)

Sherwood-Relies (Puchwein et al. 2022): 48 simulations + postprocessing 3x matched RT simulations (patchy reionization) 48x simulations for mass resolution (thermal history dependent)

Small-scales ($< 1 \; \mathrm{Mpc/h}$)

Testing Dark Matter Models

- Relative suppression
 of small-scale clustering
- ROBUST CONSTRAINTS
 for variety of models

Can we rule out large ranges in DM particle mass?

Motivation: non-resonant sterile neutrino (3.5 keV), excluding ultra-light axions with $m_{\rm a}>10^{-14}~{\rm eV}$

Can we distinguish Between DM models?

Motivation: information on production mechanism

Intermediate-scales (1 - 10 Mpc/h)

Is there a σ_8 tension?

Intermediate-scales (1 - 10 Mpc/h)

Could mixed WDM/CDM models solve the σ_8 tension?

Only fraction of DM in the form of a light particle

with T. Kobayashi (SISSA)

Lylpha data: $f_{
m nCDM} \sim 10-20\%$

Conclusions

- Lyman- α forest as a high-z LSS tracer
- A unique probe of the IGM (redshift range, small scales)
- Intermediate-scales (1 10 Mpc/h): Amplitude/Slope of matter clustering
- Small-scales ($< 1~{\rm Mpc/h}$): Robust constraints on DM models $m_{\rm WDM} > 5.8~{\rm keV}$ (preliminary)
- \bullet Lyman- α is sensitive to the typical scale imprinted by DM particles onto the matter density distribution
- Mixed light/heavy DM models might help with σ_8 tension