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Lessons from the CMB

▶ 21cm global signal detection is superficially
similar to detecting the primordial CMB.

▶ Both are attempted to detect tiny ∼ 10−5

cosmological signals hidden beneath a large
“uninteresting” foreground.

▶ Both measurements are frustrated by
complicated contaminants.

▶ Both are amenable to a Bayesian analysis.
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The three pillars of Bayesian inference

▶ Parameter estimation: “What do the data tell me about my model?”:

P(θ|D,M) =
P(D|θ,M)P(θ|M)

P(D|M)
, P =

L × π

Z
, Posterior =

Likelihood× Prior

Evidence
.

▶ Model comparison: “Which model best fits the data?”:

P(M|D) =
P(D|M)P(M)

P(D)
,

ZMΠM∑
m ZmΠm

, Model Posterior =
Evidence×Model Prior

Normalisation
.

▶ Tension quantification: “Are datasets consistent within a given model?” [1902.04029]

R =
ZAB

ZAZB
, logS = ⟨logLAB⟩PAB

− ⟨logLB⟩PA
− ⟨logLB⟩PB
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What is a model?

▶ Model comparison in its purest form answers question such as:
▶ “Is the universe ΛCDM?”
▶ “Are neutrinos in a normal or inverted hierarchy?”
▶ “Is there a detectable global signal in this data?”

▶ However model M is likelihood L = P(D|θ,M) and priors π = P(θ|M), Π = P(M)

▶ Can use the evidence Z to decide on which out of a set of likelihoods best describe data
(e.g. Gaussian, Cauchy, Poisson, radiometric).

▶ Can also use it for antenna selection [2106.10193] [2109.10098].

▶ In principle can use it to decide between theoretically motivated priors (care needed)
▶ It can also be used for non-parametric reconstruction:

▶ “How many polynomial terms best describe the data?”
▶ “How complicated a sky model do I need?”
▶ “Which is the best sky model?”
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Primordial power spectrum PR(k) reconstruction [1908.00906]

▶ Traditionally parameterise the primordial
power spectrum with (As , ns)

PR(k) = As

(
k

k∗

)ns−1

▶ To add more degrees of freedom, can add
“running” parameters nrun (higher order
polynomial in index)

▶ Alternative non-parametric technique
introduces a more flexible phenomenological
parameterisation: “FlexKnots”

▶ Let the Bayesian evidence decide when
you’ve introduced too many parameters

logPR(k)

log k

As

(
k
k∗

)ns−1
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0 internal knots
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1 internal knot
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2 internal knots
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3 internal knots
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4 internal knots
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5 internal knots

▶ Traditionally parameterise the primordial
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6 internal knots

▶ Traditionally parameterise the primordial
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7 internal knots

▶ Traditionally parameterise the primordial
power spectrum with (As , ns)
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▶ To add more degrees of freedom, can add
“running” parameters nrun (higher order
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Bayes Factors

▶ Traditionally parameterise the primordial
power spectrum with (As , ns)

PR(k) = As

(
k

k∗

)ns−1

▶ To add more degrees of freedom, can add
“running” parameters nrun (higher order
polynomial in index)

▶ Alternative non-parametric technique
introduces a more flexible phenomenological
parameterisation: “FlexKnots”

▶ Let the Bayesian evidence decide when
you’ve introduced too many parameters
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Marginalised plot

▶ Traditionally parameterise the primordial
power spectrum with (As , ns)

PR(k) = As

(
k

k∗

)ns−1

▶ To add more degrees of freedom, can add
“running” parameters nrun (higher order
polynomial in index)

▶ Alternative non-parametric technique
introduces a more flexible phenomenological
parameterisation: “FlexKnots”

▶ Let the Bayesian evidence decide when
you’ve introduced too many parameters
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Kullback-Liebler divergences

▶ Traditionally parameterise the primordial
power spectrum with (As , ns)

PR(k) = As

(
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)ns−1

▶ To add more degrees of freedom, can add
“running” parameters nrun (higher order
polynomial in index)

▶ Alternative non-parametric technique
introduces a more flexible phenomenological
parameterisation: “FlexKnots”

▶ Let the Bayesian evidence decide when
you’ve introduced too many parameters
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Occam’s Razor [2102.11511]

▶ Bayesian inference quantifies Occam’s Razor:
▶ “Entities are not to be multiplied without necessity” — William of Occam
▶ “Everything should be kept as simple as possible, but not simpler” — “Albert Einstein”

▶ Properties of the evidence: rearrange Bayes’ theorem for parameter estimation

P(θ) =
L(θ)π(θ)

Z
⇒ logZ = logL(θ)− log

P(θ)

π(θ)

▶ Evidence is composed of a “goodness of fit” term and “Occam Penalty”

▶ RHS true for all θ. Take max likelihood
value θ∗:

logZ = −χ2
min −Mackay penalty

▶ Be more Bayesian and take posterior average
to get the “Occam’s razor equation”

logZ = ⟨logL⟩P −DKL

▶ Natural regularisation which penalises models with too many parameters.
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Kullback Liebler divergence

▶ The KL divergence between prior π and
posterior P is is defined as:

DKL =

〈
log

P
π

〉
P
=

∫
P(θ) log

P(θ)

π(θ)
dθ.

▶ Whilst not a distance, D = 0 when P = π.

▶ Occurs in the context of machine learning as
an objective function for training functions.

▶ In Bayesian inference it can be understood as
a log-ratio of “volumes”:

DKL ≈ log
Vπ

VP
.

(this is exact for top-hat distributions).
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Why do sampling?

▶ The cornerstone of numerical Bayesian
inference is working with samples.

▶ Generate a set of representative parameters
drawn in proportion to the posterior θ ∼ P.

▶ The magic of marginalisation ⇒ perform
usual analysis on each sample in turn.

▶ The golden rule is stay in samples until the
last moment before computing summary
statistics/triangle plots because

f ( ⟨X ⟩ ) ̸= ⟨ f (X ) ⟩

▶ Generally need ∼ O(12) independent
samples to compute a value and error bar.
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How to generate samples

▶ MCMC!

▶ chi-feng.github.io/mcmc-demo/
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Nested Sampling: Benefits and drawbacks

Relative to traditional numerical posterior samples (Metropolis Hastings, HMC, emcee),
nested sampling:

+ Can calculate evidence (and therefore perform model comparison).

+ Can calculate KL divergence.

+ Can handle multi-modal distributions.

+ Requires little tuning for an a-priori unseen problem.

+ Highly parallelisable (ncores ∼ nlive ≫ 4).

+ Does not require gradients

− Slower than a well-tuned posterior sampler.

− Run time is dependent on prior choice, and priors must be proper
(some people view this as a feature rather than a bug).
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The importance of global measures of tension

▶ Hubble tension [1907.10625]
▶ Planck: H0 = 67.4± 0.5
▶ SH0ES: H0 = 74.0± 1.4

▶ In other situations the discrepancy doesn’t
exist in a single interpretable parameter

▶ For example: DES+Planck [1902.04029]

▶ Are these two datasets in tension?

▶ There are a lot more parameters – are we
sure that tensions aren’t hiding? Are we sure
we’ve chosen the best ones to reveal the
tension?

▶ Should use “Suspiciousness” statistic S, or
Bayes ratio R to determine global tension.
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Future extensions for REACH

▶ Tension quantification for cross validation
▶ Between experiments
▶ Between REACH antennae
▶ Between different subsets of the REACH timestream

▶ Model marginalisation rather than comparison

▶ FlexKnot reconstructions

▶ Likelihood selection

▶ Occam factors on evidence plots.

▶ Integration of calibration and cosmology pipelines
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FAQs

▶ What was that awesome website?
Full credit to Chi-feng for this incredible online demonstration tool

chi-feng.github.io/mcmc-demo/

▶ How do you make your plots look hand-drawn?

import matplotlib.pyplot as plt

plt.xkcd()
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