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Using machine learning and

Bayesian inference in galaxy
evolution




Outline

Disentangling indirect byproducts from intrinsic
relations with partial correlation coefficients and
random forest regression

Understanding the origin of the mass-metallicity relation

Forward modelling light distributions with ForcePho to
determine fluxes

Fitting SEDs with Prospector to infer physical quantities



The Star Forming Schmidt-Kennicutt (SK) relation
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The Star Forming ‘Main Sequence’ (SFMS)

1.0 [ TT T ] | A | I | B0 b O | I | 556 e F | I | 3 7 l—l ¥ 0 50 100 150 200 250 =00
— DI _05
: star—forming galaxies: D4 ’
e S star—forming galaxies: D1
: — s ar—-forming galaxies: all = -1.0
T 1 =
0.0 — e | -1.59
£ | X
g E X ] i
= r- =1 l
E f— E — ©
w s — = | =
2 tg = - ~2.5
N 7
-1.0 00 —
N 2 = -3.03
= | o
— —
= | —3.5
B o | ~4.0
200011 ¥ l | | 1 l | S ot 1 | I LAl l L1}

6.5 7.0 7.5 8.0 8.5 9.0
Log(Z, [M, Kpc™?])

8.0 9.0 10.0
log Mass [Mg)]

_ Spatially resolved version
Integrated, global version



ICE CREAM

Correlation
does not

imply
causation

DRY, HOT AND SUNNY
SUMMER WEATHER

SUNBURN



SFR




/\ Star Forming
Main Sequence
| — —




f /\ Star Forming

Main Sequence




Star Forming
Main Sequence
SK relation




Star Forming
Main Sequence
SK relation




IS it 2« Or 2y, driving 2egR?
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IS it 2« Or 2y, driving 2egR?

Zpe

Star Forming

Main Sequence
SK relation

&Z Also, an additional
Hy correlation must be
present between
2 OF 2y



The ALMaQUEST survey and the ‘Main Sequences’
46 galaxies with resolved CO (ALMA) and optical spectroscopy (MaNGA)
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. . e Partial correlation coefficients give the correlation between
Pa rtlal Correlatlon two quantities whilst holding further quantities constant

Coefficients « -> powerful tool to disentangle intrinsic (direct) correlations
from indirect correlations which are a by-product of other

correlations
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Disentangling direct, intrinsic correlations from those that are
induced/by-product requires using/controlling all data simultaneously
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Random Forest Regression

* Form of supervised (i.e. identifiable labels) Machine Learning

* Multiple decision trees — split via Gini Impurity (a measure of the quality of a split)

e Can probe several inter-correlated quantities simultaneously, uncover non-linear
relationships, and determine the intrinsic dependence of a quantity (Bluck et al. 2022)

William Baker



Relative importance

Random Forest (Machine Learning) Regression analysis

Relative importance of various galactic parameters in predicting X
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Possible explanations:
Gas accretion via gravity
HI->H2 conversion



SFR /\ Star Forming
w Main Sequence
SK relation By-product
—

ZX

Molecular Gas
Main Sequence



ZSFR /\ Star Forming
7 Main Sequence
*/ By-product

SK relation

&Z Molecular Gas
H

2 Main Sequence



Same finding for the integrated, global quantities — Locally
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Same finding for the integrated, global quantities — At high-z
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What about other quantities? Gas phase metallicity

* Gas phase metallicity, 12+log(O/H), is the
metaII|C|ty of the ISM as traced by emission

lines
gas inflow into halo
gas inflow into §alaxy> wind outflow
j\, * Important tracer of many baryonic
__________________ processes taking place in galaxies
galaxy ‘
stem * Can trace gas inflows, outflows, star-
fosmatiod - formation, etc.

* Can be reasonably well-modelled by simple
gas-regulator models e.g. Lilly+2013

Lilly+2013



12 + log(O/H)

Mass-Metallicity Relation (MZR)
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* Metallicity increases with stellar
mass up to M,~1010->"11pg

* more massive galaxies have larger
gravitational potentials = better
able to hold onto metals?

* Or larger stellar mass, hence greater
star-formation over its history, hence
greater metal production?

Tremonti+ 2004



Does the

MasSs- . .

. Or is It tracing
metall ICITY dynamical mass or the
underlying
gravitational potential?

relation (MZR)
truly trace
stellar mass?
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Can investigate many more quantities
simultaneously with random forests
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* E.g. what does the gas-
phase metallicity of SF
galaxies depend on?

* Here we show metallicity
depends on stellar mass not
the underlying gravitational
potential



Bayseian Inference with ForcePho

* NIRCam on JWST gives us some JADES-GS-213-0

of the deepest images of the i
universe 4 1320
K

* But how do we accurately
extract the light of the source?
(whilst accounting for multiple
components, PSF effects etc.)

Robertson+2023



ForcePho

* ForcePho (Johnson+ in prep) is a forced photometry tool that
fits multiple PSF convolved Sersic profiles simultaneously to
each filter https://github.com/bd-j/forcepho Clump

* Uses Dynamic Nested sampling through Dynesty
(Speagle+2020)

* We can use it to fit a three-component model to this z=7.43
galaxy!

e Central Core

* + Disc

e + Clump


https://github.com/bd-j/forcepho

Residual Data

Model

ForcePho fits

* Can see how ForcePho models the components well in each band

Three- com onent Fit
FO90W F115W F150W F200W F277W 335M F356W FA410M FA44W

A1 t-d-1-1-1<]-0
i I |
HEBREDRRDN|

Baker et al., submitted

Flux [nJy]
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e Corner fit showing fluxes
and sizes for the Core
and Disc components

Baker et al., submitted



Now we have the SED — Bayesian Inference
with Prospector

SED fitting with Prospector (Johnson+ 2021)
Rest-frame Wavelength (A)
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100:—

Nebular emission via Cloudy — fit for

lonization parameter and gas phase 10000 20000 30000 10000 50000
metallicity Observed Wavelength (4)
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D ISC Disc
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the same fitting routine
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* Fit independently, but
with the same fitting
routine

e Can see that the clump
has a distinct stellar
population =2 might be a
small merging galaxy?

* log(M,./Mg)=7.2
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Redshift
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Star-formation
histories

* Disc appears to be undergoing a
recent burst

* Core appears to be decreasing in
SFR

* Core and Clump appear to be older,
Disc appears to be younger



* Partial correlation coefficients and random forest
regression can be used to help uncover intrinsic
relationships amongst highly inter-correlated quantities

= SFMS is not an intrinsic scaling relation, rather a
byproduct of the MGMS and SK relations

S Uumima ry = MZR does actually trace stellar mass not the
gravitational potential

* Nested sampling and Bayesian inference (in this case
ForcePho and Prospector) important to accurately fit
models for high-z galaxies

—> enables us to model structure in a z=7.43 galaxy




Thank you for listening!






Residual Data

Model

Residual Data

Model

One-component Fit
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Two-component Fit
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