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Outline

1. Disentangling indirect byproducts from intrinsic 
relations with partial correlation coefficients and 
random forest regression

2. Understanding the origin of the mass-metallicity relation

3. Forward modelling light distributions with ForcePho to 
determine fluxes

4. Fitting SEDs with Prospector to infer physical quantities



The Star Forming Schmidt-Kennicutt (SK) relation

Integrated version Resolved version

Utomo 2017

Kennicutt & Evans 2012



The Star Forming ‘Main Sequence’ (SFMS)

Integrated, global version
Spatially resolved version

e.g. Cano Diaz+16, Wuyts+13, Akiyama+18, Hsieh+17, Baker+2022 e.g Brinchmann+01, Peng+10, Renzini & Peng’15,....
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Is it S* or SH2 driving SSFR?
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Also, an additional
correlation must be
present between
S* or SH2
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Is it S* or SH2 driving SSFR?



Lin+19

The ALMaQUEST survey and the ‘Main Sequences’
 46 galaxies with resolved CO (ALMA) and optical spectroscopy (MaNGA)

Molecular Gas
Main Sequence

Which of these three
relations are
primary/fundamental
and which are instead
a by-product of the others?



Partial Correlation 
Coefficients

• Partial correlation coefficients give the correlation between 
two quantities whilst holding further quantities constant
• -> powerful tool to disentangle intrinsic (direct) correlations 
from indirect correlations which are a by-product of other 
correlations

Bluck+2020



Disentangling direct, intrinsic correlations from those that are 
induced/by-product requires using/controlling all data simultaneously

SSFR depends strongly on SH2

SSFR does not depend on S* at a fixed SH2

Baker+22 Arrow:
direction of average gradient
from Partial Correlation Coefficients
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Random Forest Regression

William Baker

• Form of supervised (i.e. identifiable labels) Machine Learning

• Multiple decision trees – split via Gini Impurity (a measure of the quality of a split)

• Can probe several inter-correlated quantities simultaneously, uncover non-linear 
relationships, and determine the intrinsic dependence of a quantity  (Bluck et al. 2022)

• For further details on Partial correlations or Random Forests see Bluck et al. 2020, 2022, 
Piotrowska+2022 or Baker+2022, 2023a, 2023b, Baker & Maiolino 2023



Random Forest (Machine Learning) Regression analysis

Relative importance of various galactic parameters in predicting SSFR

SH2  (i.e. Schmidt-Kennicutt) unambiguously, 
 by far, the most important

S* totally unimportant once the dependence
 on SH2 is taken into account

Baker+22
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Parameter importance in determining ßSFR

Metallicity Independent,
MSE train,test = [0.06, 0.07]

Metallicity Dependent,
MSE train,test = [0.06, 0.07]
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Possible explanations:
Gas accretion via gravity
HI->H2 conversion
.....
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H2 fuels Star Formation
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Same finding for the integrated, global quantities – Locally
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Same finding for the integrated, global quantities – At high-z
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What about other quantities?  Gas phase metallicity

• Gas phase metallicity, 12+log(O/H), is the 
metallicity of the ISM as traced by emission 
lines

• Important tracer of many baryonic 
processes taking place in galaxies

• Can trace gas inflows, outflows, star-
formation, etc.

• Can be reasonably well-modelled by simple 
gas-regulator models e.g. Lilly+2013

Lilly+2013



Mass-Metallicity Relation (MZR)

• Metallicity increases with stellar 
mass up to 𝑀∗~10"#.%&""M☉ 

• more massive galaxies have larger 
gravitational potentials à better 
able to hold onto metals?
• Or larger stellar mass, hence greater 

star-formation over its history, hence 
greater metal production?

Tremonti+ 2004



Does the 
mass-
metallicity 
relation (MZR) 
truly trace 
stellar mass?

Or is it tracing 
dynamical mass or the 
underlying 
gravitational potential?

William Baker



Can investigate many more quantities 
simultaneously with random forests 

• E.g. what does the gas-
phase metallicity of SF 
galaxies depend on?

• Here we show metallicity 
depends on stellar mass not 
the underlying gravitational 
potential

Baker & Maiolino, 2023



Bayseian Inference with ForcePho

• NIRCam on JWST gives us some 
of the deepest images of the 
universe

• But how do we accurately 
extract the light of the source? 
(whilst accounting for multiple 
components, PSF effects etc.)

Robertson+2023



ForcePho

• ForcePho (Johnson+ in prep) is a forced photometry tool that 
fits multiple PSF convolved Sersic profiles simultaneously to 
each filter https://github.com/bd-j/forcepho

• Uses Dynamic Nested sampling through Dynesty 
(Speagle+2020)

• We can use it to fit a three-component model to this z=7.43 
galaxy!

• Central Core 
• + Disc 
• + Clump

Clump

Baker et al., submitted

https://github.com/bd-j/forcepho


ForcePho fits

• Can see how ForcePho models the components well in each band

Baker et al., submitted



ForcePho Fits

• Corner fit showing fluxes 
and sizes for the Core 
and Disc components

Baker et al., submitted



Now we have the SED – Bayesian Inference 
with Prospector

• SED fitting with Prospector (Johnson+ 2021) 

• Nested Sampling through Dynesty

• Non-parametric SFH (Continuity prior, Leja+ 
2019)

• Flexible dust attenuation model

• Nebular emission via Cloudy – fit for 
Ionization parameter and gas phase 
metallicity

Baker et al., submitted



Core 
Component

• SED fitting with Prospector 
(Johnson+ 2021)

• log(𝑀∗/M☉)= 8.39

Baker et al., submitted



Disc 
Component

• Fit independently, but with 
the same fitting routine

• log(𝑀∗/M☉)= 8.3

• Also fit combined 
photometry – find we miss 
stellar mass à spatially 
resolved photometry 
important!

Baker et al., submitted



Clump 
Component

• Fit independently, but 
with the same fitting 
routine

• Can see that the clump 
has a distinct stellar 
population à might be a 
small merging galaxy?

• log(𝑀∗/M☉)= 7.2

Baker et al., submitted



Star-formation 
histories

• Disc appears to be undergoing a 
recent burst

• Core appears to be decreasing in 
SFR

• Core and Clump appear to be older, 
Disc appears to be younger

Baker et al., submitted



Summary

• Partial correlation coefficients and random forest 
regression can be used to help uncover intrinsic 
relationships amongst highly inter-correlated quantities

• à SFMS is not an intrinsic scaling relation, rather a 
byproduct of the MGMS and SK relations

• à MZR does actually trace stellar mass not the 
gravitational potential

• Nested sampling and Bayesian inference (in this case 
ForcePho and Prospector) important to accurately fit 
models for high-z galaxies

• à enables us to model structure in a z=7.43 galaxy



Thank you for listening!





One and two 
component 

fits

Baker et al., in prep


