Rocky exo-planet diversity from protoplanet solidification

Tim Lichtenberg

Dan Bower (U Bern) Patrick Sanan (ETH Zurich) Ryan Boukrouche (Oxford) Mark Hammond (Oxford) Shami Tsai (Oxford) Raymond Pierrehumbert (Oxford)

Rocky Worlds, Cambridge/UK, 6 January 2020

Rocky exo-planet diversity from protoplanet solidification

Haden Earth: from magma- to water-oceans

Haden Earth: from magma- to water-oceans

Cooling timescale & planet structure function of atmospheric speciation

Lichtenberg, Hammond, Bower, Tsai, Sanan, Boukrouche, Pierrehumbert, in prep.

Volatile fractionation from core formation + atmospheric loss

Integrated magma ocean—atmosphere framework

Lichtenberg, Hammond, Bower, Tsai, Sanan, Boukrouche, Pierrehumbert, in prep.

Atmospheric radiative-convective-chemical model

Convective adjustment scheme

Impact of planet size and (fixed) atmosphere

Stellar influence

Bonati, Lichtenberg+ 19

Integrated magma ocean—atmosphere framework

Lichtenberg, Hammond, Bower, Tsai, Sanan, Boukrouche, Pierrehumbert, in prep.

Atmospheric radiative-convective-chemical model

Convective adjustment scheme

Outgassing/ ingassing

Lichtenberg, Hammond, Bower, Tsai, Sanan, Boukrouche, Pierrehumbert, in prep.

12

Lichtenberg, Hammond, Bower, Tsai, Sanan, Boukrouche, Pierrehumbert, in prep.

Earliest atmospheric chemistry

Lichtenberg, Hammond, Bower, Tsai, Sanan, Boukrouche, Pierrehumbert, in prep.

Femperature, T (K)

Directly image magma ocean planets?

Probability of detecting magma ocean planet with future direct imaging facilities

Rocky exo-planet diversity from protoplanet solidification

- Magma ocean-atmosphere coupling shapes earliest atmospheric and upper mantle (geo-)chemistry
 - Barrier from planet formation to early planetary evolution
 - Crucially defines volatile fractionation and atmospheric chemistry
 - Stationary + runaway MO planets may reveal diversity of rocky planetary atmospheres

Connect w/ space missions and laboratory studies

) liact