How do Central and Satellite Galaxies Quench? Evidence for AGN-Feedback and Environmental Quenching in MaNGA

M83 – HST Image

M87 – HST Image

Dr. Asa F. L. Bluck University of Cambridge

<u>Collaborators:</u> R. Maiolino, J. M. Piotrowska, J. Trussler, M. Thorp, S. Brownson, S. L. Ellison, S. Sanchez, H. Teimoorinia, K. Bundy, C. J. Conselice, J. Moreno, et al.

Introduction: The "Big" Theoretical Problem

(along DM streams)

Only ~5-10% of baryons in Stars Up to ~90% of baryons in ionized hot halo → Why so few baryons in stars?

Introduction: The "Big" Theoretical Problem

Gas Inflow (along DM streams)

Why is star formation so inefficient?
 (Theoretical / Cosmological Perspective)
 Why is the hot gas halo stable to

 $\phi = dn/dM$

cooling and collapse? (Galaxy Clusters / X-ray & Radio Perspective)

3) Why do quenched galaxies exist? (Galaxy Evolution / Optical – NIR Perspective)

Only ~5-10% of baryons in Stars ~90% of baryons in ionized hot halo → Why so few baryons in stars?

Introduction: Theoretical Mechanisms for Quenching

"Intrinsic" - Centrals and Satellites

Halo Mass Quenching (M_{Halo})
 AGN Feedback: Radio-Mode (M_{BH})
 AGN Feedback: Quasar-Mode (dM_{BH}/dt)_{max}
 Stellar & Supernova Feedback (M_{*})
 Morphological Quenching (M_{Bulge}/(R_d)³)
 Mergers & Gas Depletion (B/T; Γ_m)

"Environmental" - Satellites Mostly

Ram Pressure Stripping (ρ_{gas}, V_{sat})
 Galaxy – Galaxy Harassment (δ_{gal})
 Host Halo Tidal Stripping (M_{Halo}, D_{cen})
 Location in Cosmic Web (cen. – sat. class)

More Exotic Alternatives

e.g. DM Annihilation, DM Interactions, Magnetic Fields, Cosmic Rays etc.

Wisdom from Hydrodynamical Simulations Work done by: Joanna Piotrowska (Cambridge)

Random Forest Classification Analysis

Key Insight: Central galaxy quenching is governed by M_{BH} modern simulations → Role of *integrated* impact of AGN feedback over cosmic time

Piotrowska, Bluck et al. (2020b, in prep.)

MaNGA IFU Survey – DR15

The MaNGA Survey:

- SDSS IV Ongoing Large Program
- ~10,000 Local (z < 0.1) Galaxies
 Observed with IFU Spectroscopy
- > Flat Mass Distribution $(10^9 10^{11.5} M_{sun})$
- 3600 10000 A Spectral Range
 (R = 2000)
- ~1kpc Spatial Resolution (0.5 arcsec)
- Largest IFU Survey to date!

Pipe3D DR15 VAC:

- ~4500 Galaxies Observed
- ~10 Million Spectra Analysed:
 - Emission Line Strengths (Flux & EW)
 - Absorption Lines & Spectral Indices
 - \succ Kinematics (V_{los}, σ_{los})
 - SSP Fitting Parameters: stellar mass densities, stellar ages_{L,M}, stellar metallicities, SFHs...

Bundy et al. (2015); Sanchez et al. (2016a,b)

Star Forming Main Sequence: Resolved vs. Global

Bluck et al. (2020b, submitted)

How is Star Formation Distributed within Galaxies?

All Galaxies Star Burst ($\nabla_{1Re} = -0.16 \pm 0.07 \, \text{dex}/R_e$) 1.5 Main Sequence ($\nabla_{1Re} = 0.16 \pm 0.02 \, \text{dex}/R_e$) Green Valley $(\nabla_{1Re} = 0.65 \pm 0.06 \, \text{dex}/R_e)$ 1.0 Quenched $(\nabla_{1Re} = -0.01 \pm 0.02 \text{ dex}/R_e)$ 0.5 $\Delta \Sigma_{\rm SFR} \, [\rm dex]$ 0.0 -0.5-1.0-1.5-2.0 L 0.2 0.4 0.8 1.0 1.2 1.4 0.6 1.6 R/R_e

Offset from Resolved SFMS

Luminosity Weighted Stellar Age

- Star forming systems are star forming everywhere in radius (out to r ~ 1.5Re)
- Quenched systems are quenched everywhere in radius (out to r ~ 1.5Re)
- But, green valley systems have quenched cores and star forming outskirts
 "inside out" quenching

-> "inside-out" quenching

(see also Tacchella+15, Ellison+18, Medling+18)

- High levels of star formation lead to young stellar ages
- Low levels of star formation lead to old stellar ages
- But, green valley systems have older cores and younger outskirts
 - → Consistency with SFR results

Comparing Central & Satellite Galaxies

Take Away: "Central galaxies quench "inside-out"; but satellite galaxies have much flatter profiles in transition" Bluck et al. (2020b, submitted)

Star Formation & Quenching as a Function of Mass

All Galaxies

Increasing M_{*}

Take Away: "High mass quenching proceeds inside-out but low mass quenching proceeds outside-in" Bluck et al. (2020b, submitted)

Setting up the Machine Learning Problem: Quenching Classification & Star Formation Rate Regression in ANN & RF

Quenching:

1) Identify which parameters, and groups of parameters, are particularly effective at predicting whether regions will be star forming or quenched "Classification"

Star Formation:

 Identify which parameters, and groups of parameters, are particularly effective at predicting actual SFR surface densities in star forming regions
 "Regression"

See also Teimoorinia, Bluck & Ellison (2016) & Bluck et al. (2019a) for similar ML approaches

Insights from Machine Learning: Star Formation vs. Quenching in ANN & RF for Centrals Only

Bluck et al. (2020a)

Insights from Machine Learning: Star Formation vs. Quenching in ANN & RF for Centrals Only

Bluck et al. (2020a)

Insights from Machine Learning: PCA Test of GLOBAL vs. LOCAL Star Formation & Quenching

"Quenching is a global process"

"Star formation is a local process"

Insights from Machine Learning: Quenching of Centrals & Satellites in a Random Forest Classification

Bluck et al. (2020b, submitted)

Insights from Machine Learning: Quenching of Centrals & Satellites in a Random Forest Classification

Take Away: "Central galaxy quenching depends primarily on central velocity dispersion; but *low mass* satellite galaxy quenching depends primarily on local density"

Insights from Machine Learning: Visualizing the Machine Learning Results

Central Velocity Dispersion: **O**_c

There is a striking separation in σ_c between star forming and quenched *centrals*. But no separation for low mass satellites. Local Galaxy Over-Density: δ_5

There is a clear separation in δ_5 between star forming and quenched *low mass satellites*. But essentially no separation for centrals.

Insights from Machine Learning: Important Test -- Partial Correlation Coefficient Analysis in SDSS

All Centrals

Low Mass Satellites

<u>Note</u>: negligible importance of both stellar and halo mass, at fixed central velocity dispersion

<u>Note</u>: negligible importance of central velocity dispersion at fixed local galaxy density

Bluck et al. (2020b, submitted)

Interpreting the Importance of $\sigma_{c} \& \delta_{5}$

Strong dependence on $\sigma_c \rightarrow$ Strong dependence on M_{BH}

(see also Bluck+14,16; Teimoorinia, Bluck & Ellison 2016)

Comparing M_{BH}, M_{Halo} & M_{*} as Drivers of Quenching

Bluck et al. (2020a)

Key Result:

Central galaxy quenching is governed by supermassive black hole mass (which is a natural prediction of AGN feedback models, yet highly challenging for models utilising virial shocks and/or supernovae heating to explain!)

Bringing It All Together:

 $\Delta \Sigma_{SFR}$ Profiles in Ranges of Black Hole Mass and Local Galaxy Density

Black Hole Mass: "Inside-out" Quenching

Effective in all high mass galaxies

Local Density: "Outside-in" Quenching

Effective in *low mass satellites* only

Bluck et al. 2020b, submitted

Conclusions

- > Central (and high mass satellite) quenching is governed by <u>intrinsic processes</u>, especially those connected with σ_c
- Low mass satellite quenching is governed by <u>environmental processes</u>, especially those connected with δ₅
- High mass quenching operates "inside-out"
- Low mass quenching operates "outside-in"
- Both forms of quenching encompass the entire galaxy over time...
 - → Globally Quenched Systems

(with no dependence on resolved parameters)

<u>**Papers</u>**: Bluck+20a; Bluck+20b, submitted; Piotrowska, Bluck+20b, in prep.</u>

