

Weak-Lensing Calibrated Cluster Cosmology

LCDM with varying sum of neutrino masses

Bocquet et al. <u>2019ApJ...878...55B</u>

How did we get here?

Premise: Modeling Framework

- Cluster cosmology is a modeling challenge.
- Be explicit about your assumptions!
- We will not
 - assume hydrostatic equilibrium
 - consider a hydrostatic bias extracted from hydro simulations (yet?)
- We will trust our intuition (and decades of research) that
 - cluster mass proxies correlate with mass
 - Mean observable—mass relation is well described by a power law in mass and redshift (with unknown parameters)
 - weak gravitational lensing measures halo mass with %-level systematic uncertainty (calibrated against numerical simulations because we don't have perfectly centered NFW-profile halos)
 - We should account for correlated scatter between the different observables (correlation is introduced, e.g., by projecting onto the plane of the sky)
- Theory prediction for halo abundance from *N*-body simulations (Tinker+08)

Baryons and the Halo Mass Function

Bocquet et al. 2016, MNRAS 456, 2361

- At fixed halo mass, feedback processes change the abundance
- Use hydrodynamical *Magneticum Pathfinder* simulation suite (Dolag et al., <u>www.magneticum.org</u>)
- Up to (2688 Mpc/h)³ to sample high-mass halos
- Hydro effects are important for upcoming studies using M < ~1e14 Msun

Biases if effect of hydro is ignored for eROSITA-like surveys with M > 7e13 Msun

Impact of Feedback on HMF for SPT: None?

SQLIN ML SCOPI

Bocquet et al. 2016, MNRAS 456, 2361

Magneticum Pathfinder hydro simulations (Dolag et al.)

Forward-Modeling Analysis Strategy

cosmology to capture all covariances

Sebastian Bocquet - LMU Munich

8

LCDM with varying sum of neutrino masses

Bocquet et al. <u>2019ApJ...878...55B</u>

- Wide flat priors on SZ scaling relation parameters fully encompass posterior
- Cluster constraint statistically limited by mass calibration: need more (weak lensing) data! (currently 32 clusters)
- 1.5 σ agreement with *Planck*15 TT+lowTEB

Bocquet et al. <u>2019ApJ...878...55B</u>

Blue error bars: Planck constrains the geometry of the Universe only, clusters constrain growth.

Orange error bars: More freedom in observable — mass relation

How are we going to improve?

The Dark Energy Survey

- CTIO Blanco Telescope
- 5000 square degrees in grizy
- Survey is complete analysis of Y3 data ongoing
- Strategically overlaps the SPT survey

SPT Clusters + DES Weak Lensing

SPTcluster + DES WL Analysis Pipeline

- Opportunity to make several improvements
 - Better cluster member contamination correction (Maria Paulus, Joe Mohr)
 - Explicitly marginalize over halo concentration for each halo
 - Forward-model lensing miscentering (more flexibility)
- Pipeline validation against full-scale mocks
- Data analysis will be performed blindly

 Ω_{m}

Pipeline validation against complete mocks (Bocquet+ in prep.)

Clusters in the SPTpol Survey

SPTpol 100d "deep field"

- 3-4x deeper than SPT-SZ
- deeper = lower-mass clusters
- ~1 cluster per deg2

SPTpol 2700d "Extended Cluster Survey"

- ~*Planck* depths
- Brings total number of SPT clusters to >1000

Better Exploitation of SZ Data: Multi-Component Matched Filter (MCMF)

- Use DES+WISE to identify OIR counterparts near SPT cluster candidates
- Enables ~1.5x more clusters to lower detection SNR
- Klein+18, Klein+19

Cosmology Dependence of Halo Mass Function

- Current "universal HMF" approach: extrapolate cosmology dependence
- Better: Use emulators to interpolate between numerical simulations of different cosmologies (Aemulus: McClintock+18, Dark Quest: Nishimichi+19)
- Mira-Titan Universe: first emulator suite to include massive neutrinos and dynamical dark energy (Heitmann+16)
- Use 111 (2.1 Gpc)³ and (5 Gpc)³ simulations covering 8 cosmological parameters and interpolate using Gaussian process (Bocquet+ to be submitted)

The Need for an HMF Emulator: Extreme example for w_0w_a CDM + Σm_v

Summary

- Data-driven cosmology from SPT galaxy clusters
 - Multi-observable modeling framework
 - Weak-lensing mass calibration
- WL sample is expanding thanks to the Dark Energy Survey, HST programs, and CMB lensing
- SPTpol cluster catalogs being published
 - Optical follow-up of SPT-3G high-z clusters started tonight!
- HMF emulation
- Exciting times ahead!

Backup Slides

The South Pole Telescope (SPT)

10-meter sub-mm quality wavelength telescope

95, 150, 220 GHz and 1.6, 1.2, 1.0 arcmin resolution

2007: SPT-SZ

960 detectors 95,150,220 GHz

2016: SPT-3G ~16,200 detectors 95,150, 225 GHz *+Polarization*

Bocquet et al. <u>2019ApJ...878...55B</u>

- WL is a biased mass estimator because we fit an NFW profile
- Simulation calibration:
 - NFW profile mismatch
 - Miscentering
 - Correlated LSS
- Other systematics:
 - Cluster member contamination
 - Shear and photo-z bias
- We are currently limited by the number of WL clusters, but that will change!

Effect	Impact on Mass	
	Megacam	HST
WL mass bias	0.938	0.81 - 0.92
Intrinsic scatter	0.214	(0.26 - 0.42)
$\Delta(\text{intrinsic scatter})$	0.04	0.021 - 0.055
Uncorr. LSS scatter $[M_{\odot}]$	9×10^{13}	8×10^{13}
Δ (Uncorr. LSS scatter) $[M_{\odot}]$	10^{13}	10^{13}
Mass modeling uncertainty	4.4%	5.8-6.1%
Systematic measurement uncert.	3.5%	7.2%
Total systematic uncertainty	5.6%	9.2 - 9.4%

19 clusters 13 clusters

3 + 3 + 1 parameters for mean relations 3 + 3 parameters for covariance matrix (correlated intrinsic scatter)

$$\begin{aligned} \frac{dN(\xi, z | \boldsymbol{p})}{d\xi dz} &= \iint dM \, d\zeta \, \left[\begin{array}{c} P(\xi | \zeta) P(\zeta | M, z, \boldsymbol{p}) \\ \\ \frac{dN(M, z | \boldsymbol{p})}{dM dz} \Omega(z, \boldsymbol{p}) \end{array} \right] \end{aligned}$$

$$\frac{P(Y_{\rm X}^{\rm obs}, g_{\rm t}^{\rm obs} | \xi, z, \boldsymbol{p})}{\iint \int dM \, d\zeta \, dY_{\rm X} \, dM_{\rm WL}} \begin{bmatrix} \\ P(Y_{\rm X}^{\rm obs} | Y_{\rm X}) P(g_{\rm t}^{\rm obs} | M_{\rm WL}) P(\xi | \zeta) \\ P(\zeta, Y_{\rm X}, M_{\rm WL} | M, z, \boldsymbol{p}) P(M | z, \boldsymbol{p}) \end{bmatrix}$$

Analysis workflow

Bocquet+ (arXiv: 1812.01679)

Pipeline Validation, Parameters, and Priors

Bocquet et al. 2019ApJ...878...55B

- Pipeline validation against mocks:
 - Draw halos from HMF
 - Assign multivariate observable distribution
 - Mock creation is easier than actual analysis (otherwise, this test is pointless!)
- Any remaining bias in analysis pipeline is small compared to uncertainty from real data
- Validate zero point (HMF) against independent implementations

$C_{\rm SZ}$	$\mathcal{U}(-1,2.5)$
$\sigma_{\ln\zeta}$	$\mathcal{U}(0.01, 0.5) \; (\times \mathcal{N}(0.13, 0.13^2))$
X-ray $Y_{\rm X}$ scaling	relation
$A_{Y_{\mathbf{X}}}$	$\mathcal{U}(3,10)$
$B_{Y_{\mathbf{X}}}$	$\mathcal{U}(0.3, 0.9)$
$C_{Y_{\mathbf{X}}}$	$\mathcal{U}(-1, 0.5)$
$\sigma_{\ln Y_{\mathrm{X}}}$	$\mathcal{U}(0.01, 0.5)$
$d\ln M_{\rm g}/d\ln r$	$\mathcal{U}(0.4, 1.8) \times \mathcal{N}(1.12, 0.23^2)$
WL modeling	
$\delta_{ m WL,bias}$	$\mathcal{U}(-3,3) imes \mathcal{N}(0,1)$
$\delta_{ m Megacam}$	$\mathcal{U}(-3,3) imes \mathcal{N}(0,1)$
$\delta_{ m HST}$	$\mathcal{U}(-3,3) imes \mathcal{N}(0,1)$
$\delta_{ m WL,scatter}$	$\mathcal{U}(-3,3) imes \mathcal{N}(0,1)$
$\sigma_{\mathrm{WL,LSS}_{\mathrm{Megacam}}}$	$\mathcal{U}(-3,3) imes \mathcal{N}(0,1)$
$\sigma_{\mathrm{WL,LSS}_{\mathrm{HST}}}$	$\mathcal{U}(-3,3) \times \mathcal{N}(0,1)$
Correlated scatte	er
$ ho_{ m SZ-WL}$	$\mathcal{U}(0,1)$
$ ho_{\mathrm{SZ-X}}$	$\mathcal{U}(0,1)$
$ ho_{ m X-WL}$	$\mathcal{U}(0,1)$
	$\det(\mathbf{\Sigma}) > 0$
	KICC 10th Anniversary Symposium

Prior

 $\mathcal{U}(0.05, 0.6), \, \Omega_{\rm m}(z > 0.25) > 0.156$

fixed (-1) or $\mathcal{U}(-2.5, -0.33)$

fixed or $\mathcal{U}(0.02, 0.14)$

 $\mathcal{U}(0.020, 0.024)$

 $\mathcal{U}(10^{-10}, 10^{-8})$

 $\mathcal{U}(0.55, 0.9)$ $\mathcal{U}(0.94, 1.00)$

U(0, 0.01)

fixed (0)

U(1, 10)

U(1, 2.5)

Optical depth to reionization

SZ scaling relation

Parameter

Cosmological

 $\Omega_{\rm m}$

 $\Omega_{\rm b}h^2$

 $\Omega_{\nu}h^2$

 Ω_k

 A_s

h

 n_s

w

 $A_{\rm SZ}$ B_{SZ}

Goodness of Fit Test: Passed

Bocquet et al. <u>2019ApJ...878...55B</u>

- Number counts test statistic (Kaastra 17)
 - C(model) = 439.8 +/- 26.8
 - C(data) = 449.3

X-ray Scaling Relation

Bocquet et al. <u>2019ApJ...878...55B</u>

0.40 0.48 0.56 0.64 0.72 0.80

X-ray mass-slope B_{Y_x}

- Constraints on X-ray scaling relations as a "byproduct"
- Self-similar model prediction if non-thermal pressure support is negligible
- Redshift evolution is self-similar
- Mass evolution is steeper than self-similar
 - Low-redshift half (0.25 < z < 0.6) in < 1 σ agreement with the standard self-similar evolution
 - High-redshift half (z > 0.6) shows signs of departure at ~3 σ level
- Very similar story when using M_{gas} instead of Y_X
- Also consistent with XMM results for SPT clusters (Bulbul et al. 2018)

Neutrino Masses

Bocquet et al. <u>2019ApJ...878...55B</u>

- Combination with Planck primary CMB measurements yields 2 σ preference for non-zero sum of neutrino masses
- Again, limited by mass calibration uncertainties
- Using τ prior from Planck 2018 gives 1.7 σ preference
- Using only the z < 0.6 cluster sample gives no preference for non-zero sum of neutrino masses

wCDM

Bocquet et al. <u>2019ApJ...878...55B</u>

wCDM

Bocquet et al. <u>2019ApJ...878...55B</u>

