Intensity Mapping Tomography: Method and Application to Data

Yi-Kuan Chiang

KICC 10th Anniversary Symposium, Cambridge, 09/18/2019

Johns Hopkins University — Ohio State University, CCAPP Fellow

Broadband intensity mapping?

- **Potential:** unlock the use of diffuse light in the rich legacy of sky surveys ${\bullet}$
- Challenge: frequency information is largely lost, $\mathbf{R} = \lambda/\Delta\lambda \sim 5$ more foregrounds, junk, and redshift projection — intensity mappers' nightmare

How can we deal with foregrounds, junk & redshift projection?

 $W_{Ir}(Z)$ ∞

clustering redshift estimation

Formalism: Newman+08, Menard+13, McQuinn+13

Applications in galaxy surveys: Rahman+16 (SDSS), Scottez+16 (CFHTLS), Morrison+16 (KiDS), Davis+18 (DES)

intensity map **I(\phi)**

(z)
$$b_{I}(z) b_{r}(z) w_{DM}(z)$$

Cosmic UV background tomography

Far-UV (FUV) 1500 Å

Schiminovich 2019

Near-UV (NUV) 2300 Å

Redshift tomography for the Cosmic UV background

Redshift tomography is simultaneously a frequency tomography

UV background spectrum

Chiang+ 2019

tomographic observable

Constraining the UV background spectrum

Chiang+ 2019

Constraining the UV background spectrum

Lyα luminosity density constraints

The flow of information content

All is done without using any spectroscopic IM data in the UV

Only 30% of GALEX photons are in detected sources; we have recycled the rest 70%

Multiwavelength view of the diffuse sky

Take-away messages

- GALEX redshift+spectral tomography constrains the full UV background spectrum at z < 2
- Clustering redshift analysis could be an integrated part of many experiments, including CMB, HI 21cm, CII, CO, and Lya intensity mapping to: 1. test if the foreground maps are free of extragalactic contamination
 - 2. get p(z) of the extragalactic light

