

Resolving shocks and filaments at the boundary of the CGM and IGM: effects on gas properties and star formation Jake Bennett & Debora Sijacki Institute of Astronomy & KICC, University of Cambridge

Epoch of Galaxy Quenching

jake.bennett@ast.cam.ac.uk

Bennett & Sijacki (submitted to MNRAS), arXiv: 2006.10058 08/09/20

Introduction

- Cosmological, hydrodynamical simulations are powerful tools to follow physical processes across a wide range of scales.
- Applied to galaxy formation, there have been a number of recent successes, e.g. EAGLE (Schaye et al. 2015), IllustrisTNG (Nelson et al. 2018) and FIRE (Hopkins et al. 2013).

Introduction - Accretion onto Galaxies

- Hot mode gas shock heats and forms a hot halo, which slowly cools.
- Cold mode gas rapidly cools, delivering cold gas quickly (*e.g.* Silk 1977, White & Rees 1978, White & Frenk 1991).
- Simulations suggest filamentary accretion (*e.g.* Kereš et al. 2005, Dekel & Birnboim 2006, Ocvirk et al. 2008).
- Inflow rates can depend on codes used, feedback schemes and resolution. (*e.g.* Hummels et al.2019, Peeples et al. 2019, Suresh et al. 2019, van de Voort et al. 2019)

Kereš et al. 2005

Simulations

- Using AREPO (Springel 2010).
- Zoom-in of ${\sim}10^{12}~{\rm M}_{\odot}$ halo to z=6.
- Using successful feedback model from FABLE (Henden et al. 2018), itself based on Illustris (Vogelsberger et al. 2013; Genel et al. 2014, Sijacki et al. 2015).
- Introducing our new on-the-fly `shock refinement' scheme:
 - Cells identified as shocks are flagged for refinement (using Schaal & Springel (2015)).
 - Mass resolution is then boosted by a factor of up to 512 (with a target cell mass of 3.2 \times 10^4 M $_{\odot}$).

Applying shock refinement to the halo

Bennett & Sijacki (submitted to MNRAS), arXiv: 2006.10058

Bennett & Sijacki (submitted to MNRAS), arXiv: 2006.10058

- Considerably more cool structures within the hot halo (50% increase by mass).
- Filaments penetrate deeper, delivering more gas.
- Structures mostly correspond to metal-poor primordial filaments.
- We develop a more multiphase CGM more in line with observations (e.g. Rudie et al. 2012, Werk et al. 2013, Rubin et al. 2015, Crighton et al. 2015).

Base Refinement Shock Refinement

Base Refinement

Shock Refinement

- Enhanced cooling rates throughout the halo.
- Denser inflowing filaments.
- More cold clumps.

- Shocks narrower and better defined.
- Higher energy dissipation at shocks.

3D Mesh of the accretion shock, coloured by local Mach number

Bennett & Sijacki (submitted to MNRAS), arXiv: 2006.10058

3D Mesh of the accretion shock (same halo, 2 viewpoints) (with filaments found with DisPerSE (Sousbie 2011))

Bennett & Sijacki (submitted to MNRAS), arXiv: 2006.10058

Bennett & Sijacki (submitted to MNRAS), arXiv: 2006.10058

- Boosted turbulence and velocity dispersion in the hot phase.
- Suppression of thermal energy.

 Increased mass flux leads to higher kinetic energy in the cool phase.

50 kpc

HI Prevalence

 HI covering fractions increased in the CGM.

 Interesting at lower redshifts for distribution of Damped Ly-α and Lyman Limit systems.

Base Refinement Shock Refinement

50 kpc

Threshold	Refinement	$R_{\rm vir}$	$2R_{\rm vir}$
$\log(n_{\rm HI}/{\rm cm}^{-2}) < 17$	Base	0.133	0.490
	Shock	0.027	0.347
$\log(n_{\rm HI}/{\rm cm}^{-2}) > 17$	Base	0.867	0.510
	Shock	0.973	0.653
$\log(n_{\rm HI}/{\rm cm}^{-2}) > 18$	Base	0.760	0.281
	Shock	0.929	0.460
$\log(n_{\rm HI}/{\rm cm}^{-2}) > 19$	Base	0.585	0.217
	Shock	0.849	0.353
$\log(n_{\rm HI}/{\rm cm}^{-2}) > 20$	Base	0.365	0.135
	Shock	0.592	0.190

- Star formation higher.
- Also much spread out within the halo.

- Broader stellar distribution.
 - Formation of metalpoor stars in primordial filaments.

Metallicity [Z/Z _o]

Shock Refinement

Contact: jake.bennett@ast.cam.ac.uk Bennett & Sijacki (submitted to MNRAS), arXiv: 2006.10058

Conclusions

- We've developed a novel scheme to boost resolution on-the-fly around shocks in cosmological simulations, leading to:
 - More cold structures within the hot halo, creating a more multiphase CGM.
 - Visualised in 3D the link between filamentary accretion and accretion shocks.
 - Neutral hydrogen covering fractions significantly increased in the CGM.
 - Star formation is increased and is more spread out throughout the halo.