The intergalactic medium as a cosmological probe

Bolton+17, Sherwood simulation suite (PRACE call: 15 CPU Mhrs) Puchwen+19, New simulations (PRACE call: 23 CP<u>U Mhrs)</u>

COSMOLOGY WITH QSOs

Low resolution BOSS and SDSS-III spectra S/N~2-3 - 160,000 spectra

Used to detect BAOs at z=2.3 and correlations in the transverse direction

Used to place stringent constraints on **neutrino masses** <0.12 eV

Busca+13, Slosar+14, Font-Ribera+14 Palanque-Delabrouille+15, McDonald+05 Seljak+06, Baur+16, Yeche+17 etc. Medium resolution X-Shooter VLT spectra $S/N \sim 30$

100 spectra at z>3.5

Used to place stringent constraints on Warm Dark Matter in combination with high res. spectra.

> Irsic, MV+ 17a,17b Lopez+16, Irsic+16

High resolution VLT or Keck spectra S/N ~100 - ~hundreds of spectra

Used for WDM, astrophysics of the IGM and galaxy formation, variation of fundamental constants

> MV, Haehnelt & Springel 04 MV+05,08,13, Becker+11 Yeche+17, Garzilli+18, Bosman+18, Boera+19

Low redshift:

constraining feedback, HeII reio.

Known systematic errors usually larger than statistical errors.

Astro parameters are marginalized over via template fitting (e.g. McDonald+06, Viel, Schaye & Booth 2012).

<u>High-z Lyman-alpha flux power</u>

High redshift: constraining reionization

Statistical error usually comparable or larger than known systematic errors

Main systematics: patchy reionization(unlikely to be a small scale effect, Onorbe+18; Puchwein, Keating's talks).

Boera+19 constraints on tau from ~20 QSOs are comparable (and in agreement)to those obtained by Planck CMB. Two key *unique* aspects

$$P_{1D}(k) = \frac{1}{2\pi} \int_k^\infty P_{3D}(x) x dx$$

High redshift (and small scales): possibly closer to linear behaviour

THE COSMIC WEB in WDM/LCDM scenarios

log (1+8_{tost})

z=0
$$\frac{T_x}{T_\nu} = \left(\frac{10.75}{g_*(T_D)}\right)^{1/3} < 1$$

$$k_{
m FS} = rac{2\pi}{\lambda_{
m FS}} \sim 5 \, {
m Mpc}^{-1} \left(rac{m_x}{1 \, {
m keV}}
ight) \left(rac{T_
u}{T_x}
ight)$$

$$\omega_x = \Omega_x h^2 = \beta \left(\frac{m_x}{94 \,\text{eV}} \right)$$
$$\beta = (T_x/T_\nu)^3$$

z=2

$$k_{\rm FS} \sim 15.6 \frac{h}{\rm Mpc} \left(\frac{m_{\rm WDM}}{1 {\rm keV}}\right)^{4/3} \, \left(\frac{0.12}{\Omega_{\rm DM} h^2}\right)^{1/3}$$

z=5

MV, Markovic, Baldi & Weller 2013 Markovic & MV, 2014

THE HIGH REDSHIFT WDM CUTOFF

 $\delta_{F} = F/\langle F \rangle - 1$

Smoothing scales

STATUS in 2013

M _{thermal WDM} > 3.3 keV (2σ C.L.)

X-Shooter sample: bridging the gap between low-res and high-res

Irsic, MV+, 2017a, MNRAS, 466, 4332

- Sample of 100 QSOs at z>3.5 (ESO Large Programme, PI: Lopez).
- Medium resolution 30-50: different systematics involved.
- Down to relatively small scales
 0.06 s/km —> 5-10 com. Mpc/h.
- Power spectrum extraction tested on mock spectra built using PRACE simulations.
- Sample is not very constraining by itself but becomes constraining when complemented by other redshifts (like SDSS or HIRES).

X-Shooter sample: results for WDM (thermal)

Irsic, MV+, 2017b, arxiv: 1702.01764

- Likelihood greatly improves (shrinks) when combined with HIRES, pushing towards LCDM (cold).
- Increasing covariance matrix by 1.3 (for XQ-100) or applying weak priors on cosmo parameters does not impact
- Limits are then: > 1.4, > 4.1, > 5.3 keV for the reference cases for XQ-100 (medium res.), HIRES/Keck (high res.) and combined, respectively.

X-Shooter sample: IGM thermal priors

- Thermal history is the main nuisance. It is marginalized over but still quite sensitive to priors.
- For reference case T_{IGM}(z) assumed to be a power-law (motivated by IGM physics), having this assumption lifted weakens the combined constrained to 3.5 keV.
- Key-aspect here: wide redshift range that allows to break degeneracies between WDM cutoff, Jeans pressure, filtering scale (all suppress power but differently in z).

Redshift coverage is important

Since it allows to break degeneracies

Standard approach

$$T(k) = [1 + (\alpha k)^{2
u}]^{-5/
u}$$

Applies to thermal WDM (Fermi Dirac distribution)

u = 1.12;

 $\alpha = 0.049 \left(\frac{m_x}{1 \text{ keV}}\right)^{-1.11} \left(\frac{\Omega_x}{0.25}\right)^{0.11} \left(\frac{h}{0.7}\right)^{1.22} h^{-1} \text{Mpc}$

New general approach

$$T(k) = [1 + (lpha k)^eta]^\gamma$$

Applies to ?

The larger is beta, the flatter is the shape for $k < k_{1/2}$; the larger is gamma, the steeper is the small-scale cutoff

Murgia, Merle, MV +17

Non-cold Dark Matter at small scales - II: particle physics models

Simple parametrization proposed works well for:

- sterile neutrinos from scalar decays
- sterile neutrinos resonantly produced
- mixed models
- fuzzy dark matter
- ETHOS models

Non-Cold Dark Matter and constraints on the SHAPE of the cutoff

Non-Cold Dark Matter and constraints on the SHAPE of the cutoff - II

$$lpha < 0.03 \, {
m Mpc}/h \, (2\sigma)$$

 $ig|eta / \gamma ig| < 14$

Murgia, Irsic, MV, 2018

Primordial Black Holes and the Lyman-alpha forest

$$P_{\text{CDM}}(k, z) = D^2(z) \left(T_{\text{ad}}^2(k) P_{\text{ad}} + T_{\text{iso}}^2(k) P_{\text{iso}} \right) \quad \text{Afshordi, N}$$

Afshordi, McDonald, Spergel 03

Primordial Black Holes - II

Primordial Black Holes - III

Non-Cold Dark Matter: DM-Dark radiation interactions

Non relativistic DM scattering off (extra) relativistic radiation n=0,2,4 are the models usually explored

$$\Gamma_{\rm DR-DM} \propto a_{\rm dark} T^n$$

Archidiacono, Hooper, Murgia, Bohr, Lesgourgues, MV 2019

Maria Archidiacono^{1,2}, Deanna C. Hooper¹, Riccardo Murgia³, Sebastian Bohr⁴, Julien Lesgourgues¹, Matteo Viel^{3,5}

Non-Cold Dark Matter: DM-Dark radiation interactions

Particle Physics: f e r m i o n i c relativistic DR (e.g. sterile n e u t r i n o s) interacting with DM through a new boson mediator of a n e w U(1) symmetry.

= -3.6

CONCLUSIONS - I

- •WDM: consistency with cold dark matter > 3.5 keV relics 2σ C.L.
- More general simple model presented, in which for the first time some **constraints on the shape** are obtained.
- Constraints placed by a isocurvature Poisson term are prior dependent and range from 60-170 M_sun window (already closed by Planck) is also closed by Lymanalpha forest data.
- •Constraints on **DM-DR radiation models** presented. n=4,2 models can provide an equally good fit than LCDM (n=0 could ease S₈ and H₀ tensions slightly, by 1-2 sigmas).

Non-Cold Dark Matter: DM-Dark radiation interactions

	Lyα	Lyα	Lyα	Lyα
	BOSS	eBOSS	eBOSS	eBOSS + XQ-100
Parameter	+ H_0^{Gaussian}	+ H_0^{Gaussian}	+ Planck	+ Planck
	(PY15)	(This work)	(TT+lowE)	(TT+lowE)
	(1)	(2)	(3)	(4)
T_0 (z=3) (10 ³ K)	8.9 ± 3.9	10.3 ± 1.7	11.3 ± 1.6	13.7 ± 1.5
γ	0.9 ± 0.2	0.8 ± 0.1	0.7 ± 0.1	0.9 ± 0.1
σ_8	0.855 ± 0.025	0.820 ± 0.021	0.817 ± 0.007	0.804 ± 0.008
n_s	0.937 ± 0.009	0.955 ± 0.005	0.954 ± 0.004	0.961 ± 0.004
Ω_m	0.288 ± 0.012	0.269 ± 0.009	0.330 ± 0.009	0.309 ± 0.011
H_0 (km s ⁻¹ Mpc ⁻¹)	67.1 ± 1.0	67.1 ± 1.0	66.2 ± 0.6	67.6 ± 0.8

TABLE III: The final summary of the marginalized estimates (1 and 2σ C.L.) and best fit values for $m_{\rm WDM}$. Planck priors on σ_8 , n_s and Ω_m have been applied. The REF. model refers to our reference conservative analysis; REF. w/o 30% refers to the case in which we do not add an extra 30% uncertainty on the data to account for underestimated bootstrap error bars; REF. w/o covmat refers to the case in which we use only the diagonal terms of the covariance matrix; REF+SDSS is the joint analysis of our reference model and SDSS flux power.

model	(1σ)	(2σ)	best fit	$\chi^2/d.o.f.$
REF.	$> 8.3 {\rm ~keV}$	$> 3.3 {\rm ~keV}$	$33 \ \mathrm{keV}$	34/37
REF. w/o 30%	> 11.1 keV	> 4.5 keV	100 keV	48/37
REF. w/o covmat	$> 7.7 \ {\rm keV}$	$> 3.1 \ {\rm keV}$	$14.3~{\rm keV}$	33.2/37
REF. + SDSS	> 7.2 keV	$> 3.3 \ {\rm keV}$	42 keV	183.3/170

Baur+17

From Boera+18