Downsizing of Star Formation: Weighing Dark Matter Haloes Hosting Dusty Star-Forming Galaxies

Kirsten Hall¹

Thesis Advisor: Nadia Zakamska¹ **Collaborators:** Toby Marriage¹, Devin Crichton², Rachel Mandelbaum³,

The ACT Collaboration

¹Johns Hopkins University ²University of KwaZulu–Natal ³Carnegie Mellon University Goal: Investigate the redshift evolution of physical properties of Dusty Star Forming Galaxies (DSFGs) responsible for the Cosmic Infrared Background (CIB)

- Physical properties of interest:
 - Dark matter halo mass
 - IR Luminosity

→ Star formation rate

Hubble image of LIRG (DSFG) MCG-03-04-014

Dark matter halo mass is correlated with galaxy properties. \rightarrow e.g. Stellar mass, stellar growth rate

Behroozi et al. 2013

How exactly do galaxies populate dark matter halos?

 Linking the bulk of star formation in the universe to the dark matter halo masses of the host galaxies

• Halo Occupation Distribution Model

$$\langle N(M) \rangle = \langle N_{cen}(M) \rangle + \langle N_{sat}(M) \rangle$$

Herschel Space Observatory SPIRE Maps

Herschel Space Observatory SPIRE Maps

SPIRE beam sizes at 250, 350, and 500 μ m are 18", 25", 36", respectively \rightarrow confusion limited

Nguyen et al. 2010

Cross-correlate SPIRE Maps & Quasar Catalog

Hall et .al, 2018 MNRAS, 480, 149

A physically-motivated model: Dark matter

• Dark matter halo clustering is fixed

A physically-motivated model: Dark matter

• Quasar HOD, bias from other studies

$$\langle N(M) \rangle = \langle N_{cen}(M) \rangle + \langle N_{sat}(M) \rangle$$

A physically-motivated model: Dark matter

Relate IR emission to the most efficient halo mass at hosting DSFGs, M_{eff}

Consistency with cosmic star formation rate density

K. Hall - KICC10 - Sept. 19, 2019 - pages.jh.edu/~khall33

Hall et .al, 2018 MNRAS, 480, 149

Most efficient halo mass at hosting DSFGs

Downsizing:

¹The mass of 'star-forming galaxies' declines with decreasing redshift (Cowie et al. 1996; Bundy et al. 2006; Fontanot et al. 2009; Conroy & Wechsler 2009; Ishikawa et al. 2016, Wilkinson et al. 2017)

Mean halo mass hosting DSFGs

Archaeological Downsizing:

²More massive halos host galaxies that assembled their stars earlier (Behroozi et al. 2013; Tojeiro 2016; Cochrane et al. 2017)

Hall et .al, 2018 MNRAS, 480, 149

One more reason this study is important...

=

Quantifying the clustered infrared background

Quantifying a bias in other stacking analyses

• SEDs of quasars in the far-infrared, then the clustered background component needs to be understood/quantified

 \Rightarrow Other very exciting work by me and my research group and the ACT collaboration

Hall et al. 2019, submitted arXiv:1907.1131

See also: Crichton, Gralla, Hall et al. 2016

Summary: Clustering of star forming galaxies around quasars

- Halo masses of DSFGs as a function of $z \Rightarrow$ Cosmic downsizing
 - Most efficient halo mass at hosting DSFGs decreases from z~3 to z=0.5
 - Mean halo mass of DSFGs indicates galaxies in today's most massive halos formed their stars at higher z
 - 3) $\rho_{\text{SFR, DSFG}}$ consistent with $\rho_{\text{SFR, cosmic}}$
- Cross-correlations are extremely useful for studying quasars, their clustered environments, and clustering in general

