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PROPERTIES OF NS MATTER
➤ Cold matter in the interior of NS reaches supra-nuclear densities 

➤ Large uncertainties on matter properties; plethora of viable models

 ρ

Figure 7

(Left) A large sample of proposed equations of state calculated under different physical assumptions and
using a range of computational approaches. See the text for the descriptions of the equations of state, the
acronyms, and the references. (Right) The mass-radius curves corresponding to the equations of state
shown in the left panel.

this figure. Also note that the astrophysically relevant parts of these curves lie above ∼ 1 M⊙. An

important characteristic of many of these curves is that the radius remains nearly constant for the

astrophysically relevant range of masses. The notable exceptions are the self-bound strange stars
(e.g., SQM), where the radius increases with increasing mass, and stars with condensates (e.g., GS1-

2, GM, PS) where the radius decreases with mass past the point where the central density reaches

the critical one where the phase transition occurs. The mass-radius curves are also characterized
by a maximum mass beyond which there are no stable solutions. In general, equations of state

with relatively higher pressures at densities above ∼ 4 ρsat have higher maximum masses. The
presence of non-nucleonic phases, such as hyperons or condensates, reduces the pressure (referred

to as softening the equation of state) lead to smaller maximum masses.

In the remainder of this section, we will discuss how neutron star masses and radii can be used
to pin down the ultradense matter equation of state, the methodologies developed towards this

goal, and the current state of the measurements. However, we first briefly describe the constraints

on the nuclear EoS at nuclear density from low energy experiments.

4.2. Constraints on the EoS from Low Energy Experiments

For symmetric matter (i.e., nuclei containing roughly equal number of neutrons and protons) near

the nuclear saturation density, there is a range of experimental constraints. Most robustly, two-body

potentials can be inferred from nucleon-nucleon scattering data below 350 MeV and the properties
of light nuclei (Akmal, Pandharipande & Ravenhall 1998; Morales, Pandharipande & Ravenhall

2002).
The other significant constraints that arise from these experiments and are relevant for the

neutron-star equation of state are often expressed in terms of the symmetry energy parameters:

Sv and L (see eq’ns 18 and 19 in the previous section as well as the discussion in Lattimer 2012).
The experiments that yield the most accurate data and the least model-dependent results involve

26 Feryal Özel and Paulo Freire
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GW SOURCE MODELLING
➤ The post-Newtonian (PN) expansion gives  

approximate solutions to the 2-body problem  
in GR 

➤ Accurate analytic solution for the best part of the inspiral stage 

➤ Simple frequency-domain waveform: 
 
 
 

➤ Alternative formulation uses effective-one-body (EOB) approach 

➤ Numerical Relativity simulations complete the model close to/
during merger, where perturbative expansions fail
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MATTER EFFECTS IN BINARY NEUTRON STARS
➤ Tidal gravitational field of each NS deforms companion  

➤ Extra orbiting quadrupoles induced by NS spins 

➤ Tidal interactions are the dominant matter effect for 
slow-spinning NSs for LIGO/Virgo BNS sources, where 
spin-induced quadrupoles are expected to be small 

➤ In both cases, the effect magnitudes are determined by 
the equation of state (EoS) of NS matter 

➤ Post-merger signal, lifetime and type of remnant (NS/
BH) also depend on the “stiffness” of the EoS 

➤ However, post-merger occurs at very high frequencies 
(>2 kHz), where detector sensitivities are still not 
good enough

Qij = ��(m)Eij
5

ness of a black hole (m/R = 0.5) regardless of the EOS
dependent quantity y [16, 17].

Normal matter EOS behave approximately as poly-
tropes for large compactness. However, for smaller com-
pactness, the softer crust becomes a greater fraction of
the star, so the star is more centrally condensed and k2

smaller. For strange quark matter, the EOS is extremely
sti↵ near the minimum density, and the star behaves ap-
proximately as an n = 0 polytrope for small compact-
ness. As the central density and compactness increase,
the softer part of the EOS has a larger e↵ect, and the
star becomes more centrally condensed.

The parameter that is directly measurable by gravi-
tational wave observations of a binary neutron star in-
spiral is proportional to the tidal deformability �, which
is shown for each candidate EOS in Fig. 2. The values
of � for the candidate EOS show a much wider range of
behaviors than for k2 because � is proportional to k2R5,
and the candidate EOS produce a wide range of radii
(9.4–15.5 km for a 1.4 M� star for normal EOS and 8.9–
10.9 km for the SQM EOS). See Table I.

TABLE I: Properties of a 1.4 M� neutron star for the 18 EOS
discussed in the text.

EOS R(km) m/R k2 �(1036 g cm2 s2)

SLY 11.74 0.176 0.0763 1.70

AP1 9.36 0.221 0.0512 0.368

AP3 12.09 0.171 0.0858 2.22

FPS 10.85 0.191 0.0663 1.00

MPA1 12.47 0.166 0.0924 2.79

MS1 14.92 0.139 0.110 8.15

MS2 13.71 0.151 0.0883 4.28

PS 15.47 0.134 0.104 9.19

BGN1H1 12.90 0.160 0.0868 3.10

GNH3 14.20 0.146 0.0867 5.01

H1 12.86 0.161 0.0738 2.59

H4 13.76 0.150 0.104 5.13

PCL2 11.76 0.176 0.0577 1.30

ALF1 9.90 0.209 0.0541 0.513

ALF2 13.19 0.157 0.107 4.28

SQM1 8.86 0.233 0.098 0.536

SQM2 10.03 0.206 0.136 1.38

SQM3 10.87 0.190 0.166 2.52

For normal matter, � becomes large for stars near the
minimum mass configuration at roughly 0.1 M� because
they have a large radius. For masses in the expected
mass range for binary inspirals, there are several di↵er-
ences between EOS with only npeµ matter and those
with condensates. EOS with condensates have, on aver-
age, a larger �, primarily because they have, on average,
larger radii. The quark hybrid EOS ALF1 with a small
radius (9.9 km for a 1.4 M� star) and the nuclear matter
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FIG. 2: Tidal deformability � of a single neutron star as a
function of neutron-star mass for a range of realistic EOS. The
top figure shows EOS that only include npeµ matter; the mid-
dle figure shows EOS that also incorporate ⇡/hyperon/quark
matter; the bottom figure shows strange quark matter EOS.
The dashed lines between the various shaded regions repre-
sent the expected uncertainties in measuring � for an equal-
mass binary inspiral at a distance of D = 100 Mpc as it passes
through the gravitational wave frequency range 10 Hz–450 Hz.
Observations with Advanced LIGO will be sensitive to � in
the unshaded region, while the Einstein Telescope will be able
to measure � in the unshaded and light shaded regions. See
text below.

[Hinderer+ arXiv:0911.3535]
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TIDAL EFFECTS IN BNS

➤ Neutron stars are not point masses 

➤ Strong tidal effects at the end of inspiral deform each NS: 

➤ This tidal deformation affects binary orbital evolution (5PN+) 
 
 
 
 
 

➤ Tidal deformability parameter λ depends on second Love 
number and radius:

�(f) = �PP (f) + �tidal(f)

 tidal(f) = (⇡Mf)�
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GW170817: A BINARY NEUTRON STAR MERGER

➤ Coincident observation of GWs and EM 
signals across the spectrum 

➤ Low-mass binary, consistent with NSs 

➤ Host galaxy identified (NGC 4993)

LVC PRL 119 161101 (2017)
LIGO-P170817

From M and q, we obtain a measure of the component
masses m1 ∈ ð1.36; 2.26ÞM⊙ and m2 ∈ ð0.86; 1.36ÞM⊙,
shown in Fig. 4. As discussed in Sec. I, these values are
within the range of known neutron-star masses and below
those of known black holes. In combination with electro-
magnetic observations, we regard this as evidence of the
BNS nature of GW170817.
The fastest-spinning known neutron star has a dimension-

less spin≲0.4 [153], and the possible BNS J1807-2500B has
spin≲0.2 [154], after allowing for a broad range of equations
of state. However, among BNS that will merge within a
Hubble time, PSR J0737-3039A [155] has the most extreme
spin, less than ∼0.04 after spin-down is extrapolated to
merger. If we restrict the spin magnitude in our analysis to
jχj ≤ 0.05, consistent with the observed population, we
recover the mass ratio q ∈ ð0.7; 1.0Þ and component masses
m1 ∈ ð1.36;1.60ÞM⊙ andm2 ∈ ð1.17; 1.36ÞM⊙ (see Fig. 4).
We also recover χeff ∈ ð−0.01; 0.02Þ, where the upper limit
is consistent with the low-spin prior.
Our first analysis allows the tidal deformabilities of the

high-mass and low-mass component, Λ1 and Λ2, to vary
independently. Figure 5 shows the resulting 90% and
50% contours on the posterior distribution with the
post-Newtonian waveform model for the high-spin and

low-spin priors. As a comparison, we show predictions
coming from a set of candidate equations of state for
neutron-star matter [156–160], generated using fits from
[161]. All EOS support masses of 2.01 # 0.04M⊙.
Assuming that both components are neutron stars described
by the same equation of state, a single function ΛðmÞ is
computed from the static l ¼ 2 perturbation of a Tolman-
Oppenheimer-Volkoff solution [103]. The shaded regions in
Fig. 5 represent the values of the tidal deformabilitiesΛ1 and
Λ2 generated using an equation of state from the 90% most
probable fraction of the values ofm1 andm2, consistent with
the posterior shown in Fig. 4. We find that our constraints on
Λ1 and Λ2 disfavor equations of state that predict less
compact stars, since the mass range we recover generates
Λ values outside the 90% probability region. This is con-
sistent with radius constraints from x-ray observations of
neutron stars [162–166]. Analysis methods, in development,
that a priori assume the same EOS governs both stars should
improve our constraints [167].
To leading order in Λ1 and Λ2, the gravitational-wave

phase is determined by the parameter

~Λ ¼ 16

13

ðm1 þ 12m2Þm4
1Λ1 þ ðm2 þ 12m1Þm4

2Λ2

ðm1 þm2Þ5
ð1Þ

[101,117]. Assuming a uniform prior on ~Λ, we place a 90%
upper limit of ~Λ ≤ 800 in the low-spin case and ~Λ ≤ 700 in
the high-spin case. We can also constrain the functionΛðmÞ
more directly by expanding ΛðmÞ linearly about m ¼
1.4M⊙ (as in [112,115]), which gives Λð1.4M⊙Þ ≤ 1400
for the high-spin prior and Λð1.4M⊙Þ ≤ 800 for the low-
spin prior. A 95% upper bound inferred with the low-spin
prior, Λð1.4M⊙Þ ≤ 970, begins to compete with the 95%
upper bound of 1000 derived from x-ray observations
in [168].
Since the energy emitted in gravitational waves depends

critically on the EOS of neutron-star matter, with a wide
range consistent with constraints above, we are only able to
place a lower bound on the energy emitted before the onset
of strong tidal effects at fGW∼600Hz asErad > 0.025M⊙c2.
This is consistent with Erad obtained from numerical
simulations and fits for BNS systems consistent with
GW170817 [114,169–171].
We estimate systematic errors from waveform modeling

by comparing the post-Newtonian results with parameters
recovered using an effective-one-body model [124] aug-
mented with tidal effects extracted from numerical relativity
with hydrodynamics [172]. This does not change the
90% credible intervals for component masses and effective
spin under low-spin priors, but in the case of high-spin priors,
we obtain the more restrictive m1 ∈ ð1.36; 1.93ÞM⊙, m2 ∈
ð0.99; 1.36ÞM⊙, and χeff ∈ ð0.0; 0.09Þ. Recovered tidal
deformabilities indicate shifts in the posterior distributions
towards smaller values, with upper bounds for ~Λ and
Λð1.4M⊙Þ reduced by a factor of roughly (0.8, 0.8) in the

FIG. 4. Two-dimensional posterior distribution for the compo-
nent massesm1 andm2 in the rest frame of the source for the low-
spin scenario (jχj < 0.05, blue) and the high-spin scenario
(jχj < 0.89, red). The colored contours enclose 90% of the
probability from the joint posterior probability density function
for m1 and m2. The shape of the two dimensional posterior is
determined by a line of constant M and its width is determined
by the uncertainty inM. The widths of the marginal distributions
(shown on axes, dashed lines enclose 90% probability away from
equal mass of 1.36M⊙) is strongly affected by the choice of spin
priors. The result using the low-spin prior (blue) is consistent with
the masses of all known binary neutron star systems.

PRL 119, 161101 (2017) P HY S I CA L R EV I EW LE T T ER S week ending
20 OCTOBER 2017

161101-6

ApJ 848 (2017) no.2, L12
LIGO-P1700294
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CONSTRAINTS ON TIDAL PARAMETERS
➤ Sky location fixed to identified EM source 

➤ Two choices of spin priors, up to 0.05 and 0.89 resp. 

➤ Low frequency down to 23 Hz  

➤ Different BNS waveform models, including matter effects11

FIG. 9. Inferred spin parameters using the PhenomPNRT
model as in Fig. 8, but in the low-spin case where the dimen-
sionless component spin magnitudes � < 0.05. The posterior
probability densities for the dimensionless spin components
and for �p are plotted at the reference gravitational wave fre-
quency of f = 100 Hz.

by the small uncertainty in chirp mass. The lengths of
these bands are determined by the uncertainty in mass
ratio. They have most of their support near the ⇤1 = ⇤2

line corresponding to the equal mass case, and end at the
90% lower limit for the mass ratio. The predicted values
of the tidal parameters for the EOSs MS1, MS1b, and H4
lie well outside of the 90% credible region for both the
low-spin and high-spin priors, and for all waveform mod-
els. This can be compared to Fig. 5 of [3] where H4 was
still marginally consistent with the 90% credible region.

The leading tidal contribution to the GW phase evo-
lution is a mass-weighted linear combination of the two
tidal parameters ⇤̃ [135]. It first appears at 5PN order
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FIG. 10. PDFs for the tidal deformability parameters ⇤1 and
⇤2 using the high-spin (top) and low-spin (bottom) priors.
The blue shading is the PDF for the precessing waveform
PhenomPNRT. The 50% (dashed) and 90% (solid) credible
regions are shown for the four waveform models. The seven
black curves are the tidal parameters for the seven represen-
tative EOS models using the masses estimated with the Phe-
nomPNRT model, ending at the ⇤1 = ⇤2 boundary.

and is defined such that ⇤̃ = ⇤1 = ⇤2 when m1 = m2:

⇤̃ =
16

13

(m1 + 12m2)m4
1⇤1 + (m2 + 12m1)m4

2⇤2

(m1 + m2)5
. (5)

In Fig. 11 we show marginalized posteriors of ⇤̃ for the
two spin priors and four waveform models. Because we
used flat priors for ⇤1 and ⇤2, the prior for ⇤̃, and thus
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NEW IMPROVED CONSTRAINTS ON TIDAL PARAMETERS
12

the posterior for ⇤̃, goes to zero in the limit ⇤̃ ! 0. To
avoid the misinterpretation that there is no evidence for
⇤̃ = 0, we reweight the posterior for ⇤̃ by dividing by the
prior used, e↵ectively imposing a flat prior in ⇤̃. In prac-
tice, this is done by dividing a histogram of the posterior
by a histogram of the prior. The resulting histogram is
then resampled and smoothed with kernel density esti-
mation. We have verified the validity of the reweighting
procedure by comparing the results to runs where we fix
⇤2 = 0 and use a flat prior in ⇤̃. This di↵ers from the
reweighting procedure only in the small, next-to-leading-
order tidal e↵ect.

After reweighting there is still some support at ⇤̃ = 0.
For the high-spin prior, we can only place a 90% upper
limit on the tidal parameter, shown in Fig. 11 and listed
in Tables II and IV. For the TaylorF2 model, this 90% up-
per limit can be directly compared to the value reported
in [3]. We note, however, that due to a bookkeeping error
the value reported in [3] should have been 800 instead of
700. Our improved value of 730 is ⇠ 10% less than this
corrected value. As with the ⇤1–⇤2 posterior (Fig. 10),
the three models with the NRTidal prescription predict
90% upper limits that are consistent with each other and
less than the TaylorF2 results by ⇠ 10%. For the low-
spin prior, we can now place a two-sided 90% highest
posterior density (HPD) credible interval on ⇤̃ that does
not contain ⇤̃ = 0. This 90% HPD interval is the smallest
interval that contains 90% of the probability.

The PDFs for the NRTidal waveform models are bi-
modal. The secondary peak’s origin is the subject of
further investigation, but it may result from a specific
noise realization, as similar results have been seen with
injected waveforms with simulated Gaussian noise (see
Fig. 4 of [135]).

In Fig. 11 we also show posteriors of ⇤̃ (gray PDFs)
predicted by the same EOSs as in Fig. 10, evaluated us-
ing the masses m1 and m2 sampled from the posterior.
The sharp cuto↵ to the right of each EOS posterior cor-
responds to the equal mass ratio boundary. Again, as in
Fig. 10, the EOSs MS1, MS1b, and H4 lie outside the
90% credible upper limit, and are therefore disfavored.

The di↵erences between the high-spin prior and low-
spin prior can be better understood from the joint pos-
terior for ⇤̃ and the mass ratio q. Figure 12 shows these
posteriors for the PhenomPNRT model without reweight-
ing by the prior. For mass ratios near q = 1, the two
posteriors are similar. However, the high-spin prior al-
lows for a larger range of mass ratios, and for smaller
values of q there is more support for small values of ⇤̃.
If we restrict the mass ratio to q >⇠ 0.5, or equivalently
m2

>⇠ 1 M�, we find that there is less support for small
values of ⇤̃, and the two posteriors for ⇤̃ are nearly iden-
tical.

To verify that we have reliably measured the tidal
parameters, we supplement the four waveforms used in
this paper with two time-domain EOB waveform models:
SEOBNRv4T [75, 136] and TEOBResumS [74]. SEOB-
NRv4T includes dynamical tides and the e↵ects of the
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FIG. 11. PDFs of the combined tidal parameter ⇤̃ for the
high-spin (top) and low-spin (bottom) priors. Unlike in Fig. 6,
the PDFs have been reweighted by dividing by the origi-
nal prior for ⇤̃ (also shown). The 90% HPD credible in-
tervals are represented by vertical lines for each of the four
waveform models: TaylorF2, PhenomDNRT, SEOBNRT, and
PhenomPNRT. For the high-spin prior, the lower limit on
the credible interval is ⇤̃ = 0. The seven gray PDFs are
those for the seven representative EOSs using the masses es-
timated with the PhenomPNRT model. Their normalization
constants have been rescaled to fit in the figure. For these
EOSs, a 1.36M� NS has a radius of 10.4 km (WFF1), 11.3 km
(APR4), 11.7 km (SLy), 12.4 km (MPA1), 14.0 km (H4),
14.5 km (MS1b), and 14.9 km (MS1).

spin-induced quadrupole moment. TEOBResumS incor-
porates a gravitational-self-force re-summed tidal poten-
tial and the spin-induced quadrupole moment. Both
models are compatible with state-of-the-art BNS numer-
ical simulations up to merger [77, 137].

Unfortunately, these waveform models are too expen-
sive to be used for parameter estimation with LALIn-
ference. We therefore use the parallelized, but less
validated parameter estimation code RapidPE [78, 79].
This code uses a di↵erent procedure from the standard
LALInference code for generating posterior samples
and allows for parameter estimation with significantly
more expensive waveform models. For each point in the
intrinsic parameter space, RapidPE marginalizes over
the extrinsic parameters with Monte Carlo integration.
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FIG. 12. PDFs for the tidal parameter ⇤̃ and mass ratio q
using the PhenomPNRT model for the high-spin (blue) and
low-spin (orange) priors. Unlike Fig. 11, the posterior is not
reweighted by the prior, so the support that is seen at ⇤̃ = 0
is due to smoothing from the KDE. The 50% (dashed) and
90% (solid) credible regions are shown for the joint posterior.
The 90% credible interval for ⇤̃ is shown by vertical lines and
the 90% lower limit for q is shown by horizontal lines.

For aligned-spin models, the resulting 6-dimensional in-
trinsic marginalized posterior is then adaptively sampled
and fit with Gaussian process regression. Samples from
this fitted posterior are then drawn using a Markov-chain
Monte Carlo algorithm.

We performed runs with RapidPE using the low-spin
prior for three waveform models. The first used the
PhenomDNRT waveform for a direct comparison with
the LALInference result. The 90% highest poste-
rior density credible interval for ⇤̃ is shifted downward
from (70, 730) using LALInference to (20, 690) using
RapidPE. Although these di↵erences are not negligi-
ble, they are still smaller than the di↵erences between
di↵erent waveform models. The main di↵erence, how-
ever, is that ⇤̃ has a bimodal structure using LALIn-
ference that is not seen with RapidPE. There are sev-
eral possible reasons for this di↵erence. One possibility
is over-smoothing from the Gaussian process regression
fit used in RapidPE. Another possibility is di↵erences
in data processing when evaluating the likelihood func-
tions for the two codes. In addition, RapidPE does
not marginalize over detector calibration uncertainties.
However, comparisons using LALInference with and
without calibration error marginalization show that this
cannot account for the di↵erences between LALInfer-
ence and RapidPE. Unfortunately, we have not been
able to resolve the di↵erences in the shape of the pos-

terior. Given its extensive previous use and testing we
use LALInference for our main results, and only use
RapidPE for exploratory studies, leaving detailed com-
parisons to future work. For the two EOB waveforms,
the 90% highest posterior density credible interval for ⇤̃
is (0, 560) for SEOBNRv4T and (10, 690) for TEOBRe-
sumS. We note that the lower bound for SEOBNRv4T
of ⇤̃ = 0 is not the result of railing against the ⇤̃ = 0
bound. The posterior value is the same for the lower and
the upper limits of the 90% credible interval.

Recently, De et al. performed an independent analysis
of the GW data to measure the tidal parameters [138].
Their results are broadly consistent with those presented
here, but are made under the assumption that the two
merging NSs have the same EOS. They assume that the
two NSs have identical radii and that the tidal deforma-
bility of the individual stars are related by the approxi-
mate relation ⇤1 = q

6⇤2, whereas we allow the tidal pa-
rameters to vary independently. Furthermore [138] used
the TaylorF2 waveform model and restricted the spin
components �1z and �2z to be uniform in [-0.05, 0.05]
(similar to our low-spin prior on the spin magnitudes).
Their results for their least restrictive mass prior, where
they allow m1 and m2 to vary uniformly in [1, 2]M�, are
most directly comparable to our results. They obtain a
90% symmetric credible interval of ⇤̃ = 310+679

�234 (Table
I of [138]). This can be compared to our equivalent 90%
symmetric credible interval for the TaylorF2 waveform
and low-spin prior of 340+580

�240 (Table IV). Note, however,
that a symmetric 90% interval will always (by construc-
tion) yield a nonzero lower bound on ⇤̃, even if values
close to zero are not disfavored by the data. We there-
fore prefer to use an HPD interval, which may have either
a nonzero or zero lower bound, determined by the poste-
rior distribution. A more direct comparison of the results
can be done with our companion paper where we assume
a common EOS using approximate universal relations as
well as directly sampling a parameterized EOS [41, 100–
102, 139, 140].

IV. LIMITS ON POST-MERGER SIGNAL

Having used the inspiral phase of the GW signal to
constrain the properties of the component bodies, we
now place limits on the signal content after the two stars
merged to make inferences about the remnant object.
The outcome of a BNS coalescence depends on the pro-
genitor masses and the NS EOS. Soft EOSs and large
masses result in the prompt formation of a black hole
immediately after the merger [141]. Sti↵er EOS and
lower masses result in the formation of a stable or quasi-
stable NS remnant [142, 143]. A hypermassive NS, whose
mass exceeds the maximum mass of a uniformly rotating
star but is supported by di↵erential rotation and possi-
bly thermal gradients [142], will survive for <⇠ 1 s, after
which time the NS collapses into a black hole [144, 145].
A supramassive star, whose mass is lower but still ex-

From M and q, we obtain a measure of the component
masses m1 ∈ ð1.36; 2.26ÞM⊙ and m2 ∈ ð0.86; 1.36ÞM⊙,
shown in Fig. 4. As discussed in Sec. I, these values are
within the range of known neutron-star masses and below
those of known black holes. In combination with electro-
magnetic observations, we regard this as evidence of the
BNS nature of GW170817.
The fastest-spinning known neutron star has a dimension-

less spin≲0.4 [153], and the possible BNS J1807-2500B has
spin≲0.2 [154], after allowing for a broad range of equations
of state. However, among BNS that will merge within a
Hubble time, PSR J0737-3039A [155] has the most extreme
spin, less than ∼0.04 after spin-down is extrapolated to
merger. If we restrict the spin magnitude in our analysis to
jχj ≤ 0.05, consistent with the observed population, we
recover the mass ratio q ∈ ð0.7; 1.0Þ and component masses
m1 ∈ ð1.36;1.60ÞM⊙ andm2 ∈ ð1.17; 1.36ÞM⊙ (see Fig. 4).
We also recover χeff ∈ ð−0.01; 0.02Þ, where the upper limit
is consistent with the low-spin prior.
Our first analysis allows the tidal deformabilities of the

high-mass and low-mass component, Λ1 and Λ2, to vary
independently. Figure 5 shows the resulting 90% and
50% contours on the posterior distribution with the
post-Newtonian waveform model for the high-spin and

low-spin priors. As a comparison, we show predictions
coming from a set of candidate equations of state for
neutron-star matter [156–160], generated using fits from
[161]. All EOS support masses of 2.01 # 0.04M⊙.
Assuming that both components are neutron stars described
by the same equation of state, a single function ΛðmÞ is
computed from the static l ¼ 2 perturbation of a Tolman-
Oppenheimer-Volkoff solution [103]. The shaded regions in
Fig. 5 represent the values of the tidal deformabilitiesΛ1 and
Λ2 generated using an equation of state from the 90% most
probable fraction of the values ofm1 andm2, consistent with
the posterior shown in Fig. 4. We find that our constraints on
Λ1 and Λ2 disfavor equations of state that predict less
compact stars, since the mass range we recover generates
Λ values outside the 90% probability region. This is con-
sistent with radius constraints from x-ray observations of
neutron stars [162–166]. Analysis methods, in development,
that a priori assume the same EOS governs both stars should
improve our constraints [167].
To leading order in Λ1 and Λ2, the gravitational-wave

phase is determined by the parameter

~Λ ¼ 16

13

ðm1 þ 12m2Þm4
1Λ1 þ ðm2 þ 12m1Þm4

2Λ2

ðm1 þm2Þ5
ð1Þ

[101,117]. Assuming a uniform prior on ~Λ, we place a 90%
upper limit of ~Λ ≤ 800 in the low-spin case and ~Λ ≤ 700 in
the high-spin case. We can also constrain the functionΛðmÞ
more directly by expanding ΛðmÞ linearly about m ¼
1.4M⊙ (as in [112,115]), which gives Λð1.4M⊙Þ ≤ 1400
for the high-spin prior and Λð1.4M⊙Þ ≤ 800 for the low-
spin prior. A 95% upper bound inferred with the low-spin
prior, Λð1.4M⊙Þ ≤ 970, begins to compete with the 95%
upper bound of 1000 derived from x-ray observations
in [168].
Since the energy emitted in gravitational waves depends

critically on the EOS of neutron-star matter, with a wide
range consistent with constraints above, we are only able to
place a lower bound on the energy emitted before the onset
of strong tidal effects at fGW∼600Hz asErad > 0.025M⊙c2.
This is consistent with Erad obtained from numerical
simulations and fits for BNS systems consistent with
GW170817 [114,169–171].
We estimate systematic errors from waveform modeling

by comparing the post-Newtonian results with parameters
recovered using an effective-one-body model [124] aug-
mented with tidal effects extracted from numerical relativity
with hydrodynamics [172]. This does not change the
90% credible intervals for component masses and effective
spin under low-spin priors, but in the case of high-spin priors,
we obtain the more restrictive m1 ∈ ð1.36; 1.93ÞM⊙, m2 ∈
ð0.99; 1.36ÞM⊙, and χeff ∈ ð0.0; 0.09Þ. Recovered tidal
deformabilities indicate shifts in the posterior distributions
towards smaller values, with upper bounds for ~Λ and
Λð1.4M⊙Þ reduced by a factor of roughly (0.8, 0.8) in the

FIG. 4. Two-dimensional posterior distribution for the compo-
nent massesm1 andm2 in the rest frame of the source for the low-
spin scenario (jχj < 0.05, blue) and the high-spin scenario
(jχj < 0.89, red). The colored contours enclose 90% of the
probability from the joint posterior probability density function
for m1 and m2. The shape of the two dimensional posterior is
determined by a line of constant M and its width is determined
by the uncertainty inM. The widths of the marginal distributions
(shown on axes, dashed lines enclose 90% probability away from
equal mass of 1.36M⊙) is strongly affected by the choice of spin
priors. The result using the low-spin prior (blue) is consistent with
the masses of all known binary neutron star systems.
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ADDITIONAL BNS ASSUMPTIONS

➤ Work under the additional assumption that GW170817 is a 
BNS  

➤ Both NSs obey the same EOS 

➤ Implement this in two independent ways: 

➤ Sample P(ρ) function directly and integrate TOV equations 
to get macroscopic properties 

➤ Sample Λ and use approximately universal relations 
between macroscopic NS properties: Λ, Q, C, as well as 
correlation between Λ1, Λ2, q  (binary-Λ relation) Yagi-
Yunes [arXiv:1608.02582], Chatziioannou-Haster-
Zimmerman [arXiv:1804.03221]
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SPECTRAL PARAMETERIZATION OF P(\RHO)
➤ Samples the EoS directly as in 

Carney-Wade-Irwin [arXiv:
1805.11217], based on spectral 
parametrization of Lindblom 
[arXiv:1009.0738] 

➤ Constraints on P(ρ) function 
assuming a realistic 4-dim  
family of EoS  
P(ρ) ~ ρΓ  
Γ = Γ(P; γi)  ,  γi = (γ1,γ2,γ3,γ4) 

➤ Constraints at 90% CL: 

➤ P(2ρsat) ~ 3.5 x 1034 dyn/cm2  

➤ Stiff EoS region excluded
�14
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MEASUREMENT OF TIDAL DEFORMATIONS
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directly in an EOS parameter space. We sample uni-
formly in all EOS parameters within the following ranges:
�0 2 [0.2, 2], �1 2 [�1.6, 1.7], �2 2 [�0.6, 0.6], and
�3 2 [�0.02, 0.02] and additionally impose that the adi-
abatic index �(p) 2 [0.6, 4.5]. This choice of prior
ranges for the EOS parameters was chosen such that our
parametrization encompasses a wide range of candidate
EOSs [110]. Then for each sample, the four EOS pa-
rameters and the masses are mapped to a (⇤1,⇤2) pair
through the Tolman-Oppenheimer-Volkoff (TOV) equa-
tions describing the equilibrium configuration of a spher-
ical star [119]. The two tidal deformabilities are then used
to compute the waveform template.

Sampling directly in the EOS parameter space allows for
certain prior constraints to be conveniently incorporated in
the analysis. In our analysis, we impose the following cri-
teria on all EOS and mass samples: (i) causality, the speed
of sound in the NS must be less than the speed of light (plus
10% to allow for imperfect parameterization) up to the cen-
tral pressure of the heaviest star supported by the EOS; (ii)
internal consistency, the EOS must support the proposed
masses of each component; and (iii) observational consis-
tency, the EOS must have a maximum mass at least as high
as previously observed NS masses, specifically 1.97M�.
Another condition the EOS must obey is that of thermody-
namic stability; the EOS must be monotonically increasing
(d✏/dp > 0). This condition is built into the parametriza-
tion [110], so we do not need to explicitly impose it.

RESULTS

We begin by demonstrating the improvement in the mea-
surement of the tidal deformability parameters due to im-
posing a common but unknown EOS for the two NSs. In
Fig. 1 we show the marginalized joint posterior PDF for
the individual tidal deformabilities. We show results from
our analysis using the ⇤a(⇤s, q) relation in green and the
parametrized EOS without a maximum mass constraint in
blue. These are compared to results from [52], where the
two tidal deformability parameters are sampled indepen-
dently, in orange. The shaded region marks the ⇤2 < ⇤1

region that is naturally excluded when a common realis-
tic EOS is assumed, but is not excluded from the analysis
of [52]. In both cases imposing a common EOS leads to
a smaller uncertainty in the tidal deformability measure-
ment. The area of the 90% credible region for the ⇤1–⇤2

posterior shrinks by a factor of ⇠ 3, which is consistent
with the results of [106] for soft EOSs and NSs with simi-
lar masses. The tidal deformability of a 1.4M� NS can be
estimated through a linear expansion of ⇤(m)m5 around
1.4M� as in [5, 48, 120] to be ⇤1.4 = 190+390

�120
at the 90%

level when a common EOS is imposed (here and through-
out this paper we quote symmetric credible intervals). Our
results suggest that “soft” EOSs such as APR4, which pre-
dict smaller values of the tidal deformability parameter, are

favored over “stiff” EOSs such as H4 or MS1, which pre-
dict larger values of the tidal deformability parameter and
lie outside the 90% credible region.
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FIG. 1. Marginalized posterior for the tidal deformabilities of the
two binary components of GW170817. The green shading shows
the posterior obtained using the ⇤a(⇤s, q) EOS-insensitive re-
lation to impose a common EOS for the two bodies, while the
green, blue, and orange lines denote 50% (dashed) and 90%
(solid) credible levels for the posteriors obtained using EOS-
insensitive relations, a parameterized EOS without a maximum
mass requirement, and independent EOSs (taken from [52]), re-
spectively. The grey shading corresponds to the unphysical re-
gion ⇤2 < ⇤1 while the seven black scatter regions give the
tidal parameters predicted by characteristic EOS models for this
event [113, 115, 121–125].

We next explore what inferences we can make about the
structure of NSs. We do this using the spectral EOS pa-
rameterization described above in combination with the re-
quirement that the EOS must support NSs up to at least
1.97M�, a conservative estimate based on the heaviest
known pulsar [65]. From this we obtain a posterior for
the NS interior pressure as a function of rest-mass density.
The result is shown in Fig. 2, along with predictions of
the pressure-density relationship from various EOS mod-
els. The pressure posterior is shifted from the 90% credible
prior region (marked by the orange lines) and towards the
soft floor of the parameterized family of EOS. This means
that the posterior is indicating more support for softer EOS
than the prior. The vertical lines denote the nuclear satu-
ration density and two more density values that are known
to approximately correlate with bulk macroscopic proper-
ties of NSs [19]. The pressure at twice (six times) the nu-
clear saturation density is measured to be 3.5+2.7

�1.7 ⇥ 1034

(9.0+7.9
�2.6 ⇥ 1035) dyn/cm2 at the 90% level.

The pressure posterior appears to show minor signs of a
bend above a density of ⇠ 5⇢nuc. Evidence of such behav-
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MASS-RADIUS USING BOTH METHODS    
➤ Radius-mass posteriors are produced 

by either 

➤ using Λ - C relation: 
                      ,  
or 

➤ integrating TOV eqns and imposing 
EoS support at 1.97 Msun (most 
massive observed NS): 
                    ,  

➤ Parametrized-EoS method cuts out 
low radii (too soft to support  
1.97 Msun)

dr
af

t

6

8 10 12 14

R (km)

0.5

1.0

1.5

2.0

2.5

3.0

m
(M

�
)

W
F
F
1

A
P

R
4

S
L
y

M
P
A

1

H
4

BH
lim

it

Buc
hd

ah
l l
im

it
0

1

0 1

FIG. 3. Marginalized posterior for the mass m and areal radius R of each binary component using EOS-insensitive relations (left panel)
and a parametrized EOS where we impose a lower limit on the maximum mass of 1.97M� (right panel). The top blue (bottom orange)
posterior corresponds to the heavier (lighter) NS. Example mass-radius curves for selected EOSs are overplotted in grey. The lines in
the top left denote the Schwarzschild BH (R = 2m) and Buchdahl (R = 9m/4) limits. In the one-dimensional plots, solid lines are
used for the posteriors, while dashed lines are used for the corresponding parameter priors. Dotted vertical lines are used for the bounds
of the 90% credible intervals.

ence [63] arrives at a similar conclusion using our ⇤̃ < 800
constraint [5] (though see [52] for an amended ⇤̃ bound)
and the observation that ⇤̃ is almost insensitive to the bi-
nary mass ratio [99]. Our improved estimate of ⇤1.4 =
190+390

�120
, and R1 = 10.8+2.0

�1.7 km and R2 = 10.7+2.1
�1.5 km

for the EOS-insensitive-relation analysis is roughly consis-
tent with these estimates (see for example Fig. 1 of [62]
and [58]). If we additionally enforce the heaviest ob-
served pulsar to be supported by placing direct constraints
on the EOS parameter space, we get further improvement
in the radius measurement, with R1 = 11.9+1.4

�1.4 km and
R2 = 11.9+1.4

�1.4 km.

A recent analysis of the GW170817 data was performed
in De et al. [53] using the TaylorF2 model, imposing that
the two NSs have the same radii which, under the addi-
tional assumption that ⇤ / C�6 (an alternative to the ⇤–
C relation used here [104]), directly relates the two tidal
deformabilities as ⇤1 = q6⇤2. De et al. constrain the
common NS radius to a 90% credible interval 8.7 km <
R̂ < 14.1 km, corresponding to a width of 5.4 km, which
is wider than the uncertainties on radii presented in this pa-
per by a factor of about two. There are differences in sev-
eral details of the set-up of the two analyses (most notably,
frequency range, data calibration, the noise PSD estima-
tion, waveform model, parameter priors, assumed relations
between radii and ⇤s and treatment of corresponding un-
certainties), each of which may be responsible for part of

the observed discrepancies. The analysis of De et al. re-
produces the initial tidal deformability results of Abbott
et al. [5], but improvements detailed in [52] and used in this
work improved our tidal constraints by ⇠ 10-20%. Here,
in contrast to De et al, we found that enforcing a common
EOS additionally restricts the recovered tidal parameters,
as shown in Fig 1. We note, however, that while our re-
sulting posteriors for the two NS radii are similar to each
other, a fraction of the posterior samples gives pairs with
significantly different NS radii, up to |R1 � R2| ⇠ 2 km.
Therefore, the De et al. analysis makes considerably dif-
ferent assumptions when enforcing a common EOS than
us.

Our results, and specifically the lower radius limit,
do not constitute observational proof of tidal effects in
GW170817, as our analysis has explicitly assumed that the
coalescing bodies were NSs both in terms of their spins
and tidal deformabilities. In particular, the spins are re-
stricted to small values typical for galactic NSs in binaries,
and the tidal deformabilites are calculated consistently as-
suming a common typical NS EoS. Moreover, the ⇤–C
map diverges as ⇤ approaches zero (BH), and therefore
the lower bounds obtained for the radii do not imply lower
bounds on the tidal deformabilities. Meanwhile, the analy-
sis of [52] assumes independent tidal parameters and finds
a lower bound on ⇤̃ only under the small-spin assumption
but not if spins larger than 0.05 are allowed.

The detection of GW170817 has opened new avenues in
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FIG. 3. Marginalized posterior for the mass m and areal radius R of each binary component using EOS-insensitive relations (left panel)
and a parametrized EOS where we impose a lower limit on the maximum mass of 1.97M� (right panel). The top blue (bottom orange)
posterior corresponds to the heavier (lighter) NS. Example mass-radius curves for selected EOSs are overplotted in grey. The lines in
the top left denote the Schwarzschild BH (R = 2m) and Buchdahl (R = 9m/4) limits. In the one-dimensional plots, solid lines are
used for the posteriors, while dashed lines are used for the corresponding parameter priors. Dotted vertical lines are used for the bounds
of the 90% credible intervals.

ence [63] arrives at a similar conclusion using our ⇤̃ < 800
constraint [5] (though see [52] for an amended ⇤̃ bound)
and the observation that ⇤̃ is almost insensitive to the bi-
nary mass ratio [99]. Our improved estimate of ⇤1.4 =
190+390

�120
, and R1 = 10.8+2.0

�1.7 km and R2 = 10.7+2.1
�1.5 km

for the EOS-insensitive-relation analysis is roughly consis-
tent with these estimates (see for example Fig. 1 of [62]
and [58]). If we additionally enforce the heaviest ob-
served pulsar to be supported by placing direct constraints
on the EOS parameter space, we get further improvement
in the radius measurement, with R1 = 11.9+1.4

�1.4 km and
R2 = 11.9+1.4

�1.4 km.

A recent analysis of the GW170817 data was performed
in De et al. [53] using the TaylorF2 model, imposing that
the two NSs have the same radii which, under the addi-
tional assumption that ⇤ / C�6 (an alternative to the ⇤–
C relation used here [104]), directly relates the two tidal
deformabilities as ⇤1 = q6⇤2. De et al. constrain the
common NS radius to a 90% credible interval 8.7 km <
R̂ < 14.1 km, corresponding to a width of 5.4 km, which
is wider than the uncertainties on radii presented in this pa-
per by a factor of about two. There are differences in sev-
eral details of the set-up of the two analyses (most notably,
frequency range, data calibration, the noise PSD estima-
tion, waveform model, parameter priors, assumed relations
between radii and ⇤s and treatment of corresponding un-
certainties), each of which may be responsible for part of

the observed discrepancies. The analysis of De et al. re-
produces the initial tidal deformability results of Abbott
et al. [5], but improvements detailed in [52] and used in this
work improved our tidal constraints by ⇠ 10-20%. Here,
in contrast to De et al, we found that enforcing a common
EOS additionally restricts the recovered tidal parameters,
as shown in Fig 1. We note, however, that while our re-
sulting posteriors for the two NS radii are similar to each
other, a fraction of the posterior samples gives pairs with
significantly different NS radii, up to |R1 � R2| ⇠ 2 km.
Therefore, the De et al. analysis makes considerably dif-
ferent assumptions when enforcing a common EOS than
us.

Our results, and specifically the lower radius limit,
do not constitute observational proof of tidal effects in
GW170817, as our analysis has explicitly assumed that the
coalescing bodies were NSs both in terms of their spins
and tidal deformabilities. In particular, the spins are re-
stricted to small values typical for galactic NSs in binaries,
and the tidal deformabilites are calculated consistently as-
suming a common typical NS EoS. Moreover, the ⇤–C
map diverges as ⇤ approaches zero (BH), and therefore
the lower bounds obtained for the radii do not imply lower
bounds on the tidal deformabilities. Meanwhile, the analy-
sis of [52] assumes independent tidal parameters and finds
a lower bound on ⇤̃ only under the small-spin assumption
but not if spins larger than 0.05 are allowed.

The detection of GW170817 has opened new avenues in

R1=10.8
+2.0
 -1.7 R1=10.7

+2.1
 -1.5

R1=11.9+1.4
 -1.4 R2=11.9+1.4

 -1.4

LIGO-P1800115
�16

[LVC PRL 121 161101 (2018)]



LIGO-VIRGO OPEN SCIENCE

�17

GW170817 data is available in GWOSC

Results and posterior samples publicly available at

https://www.gw-openscience.org/

https://dcc.ligo.org/LIGO-P1800115/public



IMPROVING CONSTRAINTS WITH MANY BNS EVENTS
➤ Need to remove apparent source-dependence from 

parametrization of matter effects 

➤ Choice of parameterisation (or not): 

➤ Phenomenological approach: parameterise effects 
that enter the gravitational waveform model, see 
Del Pozzo, MA+2013, MA+2015  

➤ Fundamental approach: parameterise EOS of NS 
matter, then GW observables are derived 
quantities, see Lackey & Wade 2014, Carney+ 2018 

➤ Nonparametric approach: recover functional 
dependence P(ρ) or λ(m) 
(Landry & Essick 2018, MA in prep) 

➤ Need very high accuracy in both 

➤ point-mass (PM) baseline model and 

➤ matter effects in the GW waveform
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FIG. 9: 95% credible regions for the radius and tidal deformability for the same BNS systems and tabulated EOSs used in
Fig. 8. In the left panels the EOSs are SLy, MPA1, H4, MS1 from bottom to top, and in the right panels they are ENG, ALF2
and MS1b from bottom to top. The tabulated EOS models, and not the fits, were used in generating the simulated waveforms.
The lower bound from the mass and causality prior is also shown.

fects in addition to the quadrupole tidal interaction used
here may also need to be accounted for. Ref. [54], for
example, calculated the correction to the PN waveform
from higher multipole tidal interactions. In addition, the
amplification of the tidal deformation that occurs due to
resonance when the GW frequency approaches each NS’s
f-mode frequency also leads to a small correction [12].
These e↵ects are small, but will lead to a fractional error
in the recovered parameters if not properly included.

As an alternative to the PN approximation, the ef-
fective one body (EOB) formalism, which uses various
techniques to re-sum the PN series, may converge more
rapidly to the true binary waveform. EOB waveforms
have been shown to accurately reproduce numerical bi-
nary black hole (BBH) waveforms. For example, Damour
et al. [55] compared a recent EOB implementation with
nonspinning BBH simulations of the last ⇠ 30 GW cy-
cles and found a phase di↵erence of < 0.1 radians after
fitting the unknown 5PN contribution in the EOB radial
potential to the numerical data. Since the tidal contri-

bution to the waveform over this same interval is usually
more than a radian, the current EOB waveform may be
accurate enough for removing systematic errors due to
uncertainties in the point-particle model. Tidal interac-
tions have also been calculated in the EOB formalism for
the first few multipoles to 2PN order in the EOB radial
potential [27], and comparisons with numerical BNS sim-
ulations have shown that EOB waveforms are consistent
with the numerical waveforms, but only after calibra-
tion of currently unknown terms [56, 57]. Unfortunately,
BNS codes are not currently as accurate as BBH codes,
so waveforms calibrated with numerical BNS waveforms
may still bias the recovered tidal deformability.

In our analysis we injected waveforms with zero NS
spin and zero eccentricity and used a non-spinning, non-
eccentric waveform template to recover the parameters.
While NSs in known BNS systems have dimensionless
spins of |�| . 0.02, not including the spin terms in the
template can lead to systematic errors in ⇤̃ that are
greater than the statistical errors if the NSs have spins of

[Lackey & Wade PRD 91, 043002 (2015)]
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surement process we can assume c0, c1, and c2 to have
fixed values, so that their posterior densities can be com-
bined across sources as in Eq. (25).

In our earlier paper [25], where only a linear approx-
imation to �(m) was used, it was found that only the
zeroth-order coe�cient was measurable. The quadratic
approximation used in the present paper should allow
for a better fit, but here too, it turns out that only the
leading-order coe�cient c0 can be measured with any
kind of accuracy. Thus, unlike with hypothesis ranking,
in practice only a single number pertaining to the EOS
is being extracted from the data. Nevertheless, one has
c0 = �(m0), with m0 some fixed reference mass (which
we will take to be 1.4M�), and as can be seen in Fig. 2
of the paper by Hinderer et al. [18], which shows nearly
20 di↵erent predictions for �(m), valuable information
could be gleaned from just that one number.

As before, we consider the following cases:

• Spins are zero both in injections and templates,
and we compare results for an injected mass dis-
tribution that is uniform on [1, 2]M� with what
one gets with a Gaussian mass distribution that
has µm = 1.35M� and �m = 0.05M�. However,
for the templates we do not assume knowledge of
the astrophysical mass distribution, sticking to a
uniform mass prior on [1, 2]M�.

• Next we specialize to the Gaussian injected mass
distribution, and switch on spins. In the injected
waveforms, the latter are drawn from Gaussian dis-
tributions with zero mean and �� = 0.02, while in
the templates the priors for the spins are uniform
on [�0.1, 0.1].

We stress again that for analysis purposes we will not
assume knowledge of the astrophysical mass distribution,
and we will use a prior on the component masses that is
uniform on the interval [1, 2]M�. As we shall see, sig-
nificant biases will appear in the estimation of c0. These
can be traced back to this flat prior. As demonstrated
in the Appendix, if we had exact knowledge of the astro-
physical mass distribution and could use that as a prior
instead, the biases would go away.

1. Zero spins; flat versus Gaussian distribution of

component masses

Let us start with the case of zero spins, and a uniform
mass distribution. Fig. 7 shows the evolution of the me-
dians and 95% confidence intervals in the measurement of
c0 as information from an increasing number of detected
sources is combined, the injected EOS in turn being MS1,
H4, and SQM3. We see that a clean separation between
posterior densities occurs after ⇠ 50 sources have be-
come available, and uncertainties of ⇠ 10% are reached
as the number of detections goes towards 100. This can
be compared with Fig. 1 of our earlier paper [25], where

FIG. 7: Evolution of the medians and 95% confidence inter-
vals in the measurement of c0 = �(m0), the tidal deformabil-
ity at the reference mass m0 = 1.35M�, for the cases where
the injected EOS is MS1, H4, or SQM3. Both in the injec-
tions and the templates, spins are set to zero, and the injected
mass distribution is uniform on the interval [1, 2]M�.

the separation also happens around ⇠ 50 sources, but
⇠ 10% errors are arrived at somewhat sooner than here.
We recall that in that work, tidal e↵ects were only taken
to 1PN order; on the other hand, waveforms were termi-
nated at the LSO frequency rather than at the minimum
of the LSO and contact frequencies. The earlier termina-
tion of signal waveforms in the present paper leads to a
smaller number of cycles, and somewhat less information
about the EOS is available.
In Fig. 8, we show results for zero spins, and this time a

Gaussian distribution for the injected component masses.
A good separation between MS1, H4, and SQM3 doesn’t
occur until ⇠ 150 sources have become available, and
large systematic biases appear. As explained below, this
is related to the continued use of a flat prior on the com-
ponent masses, a distribution which now has a significant
mismatch with the astrophysical one. The e↵ect of the
mass prior is further investigated in the Appendix.

2. Gaussian mass distribution, non-zero spins

We now focus on the case of a Gaussian distribution for
the injected component masses, and also switch on spins,
which are drawn from a Gaussian distribution with zero
mean and �� = 0.02. We also allow for spins in the tem-
plate waveforms, with a prior distribution that is uniform
on [�0.1, 0.1], to reflect the ignorance of the true distri-
bution of spins that we will have in reality. The results
are shown in Fig. 9. As in the non-spinning case with
the same injected mass distribution, there are system-
atic biases. Having to estimate the spins as additional
parameters also increases the statistical errors, because
of the larger dimensionality of the parameter space to be
probed by the nested sampling process.
Finally, we mention that the higher-order coe�cients

[MA+ PRD 92, 023012 (2015)]
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A DIFFERENT STANDARD SIREN MEASUREMENT
➤ Like BBH, BNS mergers are standard 

sirens 

➤ Unlike BBH, BNS spacetimes are not 
“scale-symmetric” 

➤ In BBH, the effect of redshift is 
degenerate with a mass rescaling 

➤ In BNS, matter properties 
introduce additional scale that 
breaks the degeneracy 

➤ Only works if we know the EOS (or 
measure everything together) 

➤ Independent EOS measurement with 
NICER?
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FIG. 1. The fractional uncertainties in the redshift as a function of
redshift obtained from the Fisher matrix analysis for BNS systems
using 3 representative EOSs, APR [40], SLY [41] and MS1 [42]. In
all cases the component NSs have rest masses of 1.4M� and wave-
forms have a cut-o↵ frequency equal to the ISCO frequency (as de-
fined in the BNS rest-frame). We have used a cosmological param-
eter set H0 = 70.5 kms�1Mpc�1, ⌦m = 0.2736, ⌦k = 0,w0 = �1
to compute the luminosity distance for given redshifts and have as-
sumed detector noise corresponding to the ET-D [16, 39] design (a
frequency domain analytic fit to the noise floor can be found in [43]).

incide with z⇠10 but this e↵ect is diluted at higher redshifts
due to a reduction in SNR as the lower frequency part of the
signal moves out of band.

Discussion—The analysis presented here is a proof of prin-
ciple and is based on a number of assumptions and simplifi-
cations which we would like to briefly discuss and in some
cases reiterate. It is likely that by the 3rd generation GW de-
tector era our knowledge of the tidal response in BNS systems
will have significantly advanced through improved NR simu-
lations [44]. Current NR simulations have already shown that
modelling these tidal phase corrections using a PN formal-
ism, while qualitatively accurate, significantly underestimate
the tidal phase contribution [34–36]. In addition these same
studies suggest that it is possible to accurately model tidal ef-
fects up to the merger phase. Therefore we feel that our use
of the ISCO as the upper cut-o↵ frequency of the PN wave-
forms is a well justified choice for this first estimate. We have
also neglected the e↵ects of spin in our investigation which
we expect to contribute to the PN phase approximation at the
level of ⇠0.3% [17]. This does not preclude the possibility
that marginalizing over uncertainties in spin parameters may
weaken our ability to determine the redshift. This seems un-
likely given the small expected spins in these systems, as well
as the di↵erence inscalings between the spin terms and the

tidal terms, x�1/2 and x5/2 respectively, causing the tidal ef-
fects to dominate over spin in the final stage of the inspiral.
We also note that the Fisher information estimate of parame-
ter uncertainty is valid in the limit of SNR & 10 [38] and under
the assumption of Gaussian noise. As such, the results at low
SNR, and therefore those at high z, should be treated as lower
limits via the Cramer-Rao bound, on the redshift uncertainty.
We also mention here that since the tidal phase corrections
are, at leading order, formally of 5th PN order we have uncer-
tainty in the e↵ect of the missing PN expansion terms in the
BNS waveform between the 3.5PN and 5PN terms. It is com-
forting to note that as the PN order is increased our results
on the redshift uncertainty do converge to the point of <1%
di↵erence in accuracy between the 3 and 3.5PN terms imply-
ing (through extrapolation) that the missing PN terms (as yet
not calculated) would not e↵ect our results. Future detailed
analysis following this work will complement Fisher based
estimates with Monte-Carlo simulations and/or Bayesian pos-
terior based parameter estimation techniques. Similarly, the
signal parameter space should be more extensively explored
beyond the canonical 1.4M�, equal mass case. In addition,
future work will also include BHNS systems which will also
contain, encoded within their waveforms, extractable redshift
information. Such systems are observable out to potentially
higher redshift although tidal e↵ects will become less impor-
tant as the mass ratio increases [18? ]. Finally, we briefly
mention that GW detector calibration uncertainties in strain
amplitude (which for 1st generation detectors were typically
<10%) will only e↵ect the determination of the luminosity
distance. Calibration uncertainties in timing typically amount
to phase errors of <1� and would be negligible in the determi-
nation of the redshift. Similarly, the e↵ects of weak lensing
that would only a↵ect the luminosity distance measurement
have been shown to be negligible for ET sources [4].

Conclusions—Current estimates on the formation rate of
BNS systems imply that in the 3rd generation GW detector
era there is the potential for up to ⇠107 observed events per
year out to redshift z ⇡ 4 [16]. The results presented here
suggest that redshift measurements at the level of ⇠10% ac-
curacy can be achieved for each BNS event solely from the
GW observation. Such systems have long been known as GW
standard sirens [1], meaning that the luminosity distance can
be extracted from the waveform with accuracy determined by
the SNR coupled with the ability with which one is able to
infer the geometric orientation of the source. Using a large
number of sources all sharing the same redshift, the luminos-
ity distance (free of the orientation parameters) can be de-
termined statistically from the distribution of observed am-
plitudes. With the ability to extract both the luminosity dis-
tance and the redshift out to such cosmological distances and
from so many sources the precision with which one could then
determine the luminosity distance–redshift relation is signifi-
cantly enhanced. Current proposed methods for making cos-
mological inferences using GW standard sirens [3, 5, 45] rely
on coincident EM counterpart signals from their progenitors
in order to obtain the redshift. Our method would allow mea-

[Messenger & Read PRL 108  091101 (2012)]



DID GW170817 PROMPTLY COLLAPSE TO A BH?
➤ EM indicates: probably not! 

➤ What can we say with GW signal alone? 

➤ Threshold-Λ analysis: sample Λ directly 

➤ Threshold-mass analysis: sample EoS, 
derive Λ, Mmax , Mthr ; can impose mass 
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the prompt collapse inference with TaylorF2 and cut-o↵
1024 Hz gives consistent results with the injection ex-
cept for binaries with ⇤ ⇠ ⇤̃thr. For the DD2 1.59+1.59
BNS (⇤̃ = 332) and the two SLy binaries (⇤̃ ⇠ 401)
the method estimates respectively a 75% and ⇠ 40%
probability of prompt collapse while the merger result
in a HMNS. In the former case the binary is at the col-
lapse threshold and the HMNS is very short lived (3 ms).
Hence it could be simply a results of out uncertainties.
In the latter case the binaries are slightly above the col-
lapse threshold and the prediction appears to have a gen-
uine systematic error of the method. Similarly, for SFHo
1.40+1.40 (⇤̃ = 334) and ALF2 1.50+1.50 (⇤̃ = 382) the
method predicts 33% and 54% probability of producing
a NS remnant while the simulations indicate prompt BH
formation.

Recovering with IMRPhenomPv2NRtidal systematically
underestimates the injected TEOBResumS ⇤̃; the e↵ect be-
ing worst for cut-o↵ frequency 1024 Hz and minimzed by
cut-o↵ 2048 Hz. The result can be in part understood
from the fact that the low frequency limit of the NRtidal
is accurate only to the leading-order post-Newtonian
tidal term [70, 76]. The same systematic trend can be
seen in the threshold-mass analysis summarized in the
right panel of Fig. 10, which is more pronounced in the
less compact binaries. The errors in the prompt collapse
analysis due to the numerical fits on kthr discussed above,
are now combined with those from the waveform sys-
tematics. As a result, the method predicts correctly the
prompt collapse of ALF2 1.59+1.59 and SFHo 1.40+1.40
(thanks to a “cancellation” of systematic errors) but in-
correctly favours prompt collapse for the SLy binaries.

Appendix C: E↵ect of Mmax

TOV constraint

In the threshold-mass method, sampling the EOS pa-
rameter space directly allowed us to impose conditions
on the maximum stable nonrotating NS mass, Mmax

TOV
. In

this section we examine the e↵ect that di↵erent choices
of this constraint may have on estimating the probability
of prompt collapse.

First we review the results of the injection study of
Sec. IV when imposing a Mmax

TOV
constraint based on

the mass measurement of PSR J0348+0432. Results are
summarized in Fig. 12. When comparing against Fig. 2,
we observe a systematic trend to lower values of recov-
ered M/Mthr. This can be interpreted as a push towards
higher values of Mthr, which is expected, since a soft
part of the space of EOS is e↵ectively removed from our
prior. Note the peculiar behavior of the 2B BNS as a
consequence of the fact that the maximum mass for that
EOS violates the prior imposed in the analysis.

We now move on to the analysis of GW170817 data
using the spectral EOS parametrization and consider the
following choices:

• No constraint on Mmax

TOV
;

FIG. 12. E↵ect of Mmax
TOV constraint on the threshold mass

parameter analysis (see Fig. 2) using the PSR J0348+0432
mass measurement.

• A hard constraint of Mmax

TOV
� 1.97M�, correspond-

ing to a conservative 1-� bound on the mass of PSR
J0348+0432;

• A probabilistic constraint based on the mass mea-
surement of PSR J0348+0432, which follows the
Gaussian PDF N (2.01, 0.04);

• A probabilistic constraint based on the recent ob-
servation of PSR J0740+6620, which follows the
Gaussian PDF N (2.17, 0.11);

The results are illustrated in Fig. 13. We find that if
the heavy-NS measurements are taken into account, the
prompt-collapse probability tends to zero (even more so
than in the case of a hard cut at 1.97 M�).

FIG. 13. Cumulative distribution of the total mass M di-
vided by the threshold mass Mthr for di↵erent choices of the
Mmax

TOV constraint. The value at X = 1 gives the probability
of prompt collapse.

7

FIG. 4. Prompt-collapse analysis of GW170817 based on threshold tidal parameter method, with and without a hard Mmax
TOV

constraint at 1.97 M�. Left: Joint posteriors in the M -Mmax
TOV plane when analysing with (orange) and without (blue) a prior

cut on Mmax
TOV. Dark (light) colored points lie above (below) the mass threshold of prompt collapse. Contours of kthr within the

typical range [1.3, 1.7] are shown as gray shaded regions. Right: Probability of prompt collapse as a function of kthr with and
without the Mmax

TOV constraint (before making use of Eq. (3)).

First, for the threshold-mass method we show in Fig-
ure 4 the joint posterior of total mass M and the thresh-
old mass Mthr (left) as well as the cumulative distribu-
tion function of their ratio M/Mthr (right), obtained with
the theshold mass analysis with and without the con-
straint Mmax

TOV
� 1.97 M�. The latter plot should be

interpreted as the probability of prompt collapse as a
function of kthr, if we pretented to be totally agnostic
on kthr. Without the maximum mass constraint, the col-
lapse probability ranges from PPC ⇠ 0.2 to PPC ⇠ 0.85
for the expected range of kthr (see orange line and white
region in the plot). Including the constraint Mmax

TOV
�

1.97 M� strongly disfavours a prompt collapse: PPC = 0
if kthr > 1.4, growing up to PPC ⇠ 0.5 if kthr ⇠ 1.3, if for
very soft EOS and NS compactness Cmax ⇠ 0.33.

FIG. 5. Cumulative posterior distribution on the ratio
M/Mthr. The fraction of the posterior that lies above unity
gives the probability of prompt collapse with (blue) and with-
out (orange) a constraint of Mmax

TOV � 1.97 M�.

However, kthr is not an independent unknown parame-
ter; using the results of Sec. II A we estimate the value of

FIG. 6. The probability of prompt collapse for GW170817
as a function of the heaviest observed NS mass. The
Gaussian mass measurements of PSR J0348+0432 and PSR
J0740+6620 are shown in the shaded regions.

kthr and Mthr from the EOS parameters ~�. The resulting
posterior of M/Mthr is plotted as a cumulative distribu-
tion in Fig. 5. Here too, we find a significant di↵erence
between the analyses with and without the Mmax

TOV
con-

straint, that estimate the prompt collapse probability at
0.09 and 0.59 respectively. The reason is that the Mmax

TOV

constraint removes part of the EOS parameter space that
is too soft to support a NS mass of 1.97 M� (and will
most likely predict a prompt collapse). The e↵ect on
PPC is significant, since the recovered binary parameters
of GW170817 happen to lie close to the prompt-collapse
threshold.

Fig. 7 shows the prompt collapse probability obtained
with the threshold-⇤̃ method (cf. Fig. 3, left panel) We
find a prompt collapse probability between PPC ⇠ 43%
and 74%, depending on the waveform approximant used

8

FIG. 7. Probability of prompt collapse for GW170817 based
on the threshold-⇤̃ method for di↵erent analysis set-ups. Col-
ored curves plot the cumulative posterior probaiblity distri-
bution for ⇤̃. The solid black sigmoid curve gives the prior
probability of prompt collapse at each value of ⇤̃, based on
NR simulations. The prompt-collapse probability can be vi-
sually estimated by the value of each curve as it crosses the
transition region.

TABLE II. Summary of GW170817 results derived with the
threshold-mass and the threshold-⇤̃ methods: probability of
prompt collapse for di↵erent sets of analyses published by the
LVC.

Method Inferred parameters Approximant Ref. PPC

Mthr ~� IMRPhenomPv2NRtidal [10] 0.59

Mthr ~�|Mmax
TOV � 1.97M� IMRPhenomPv2NRtidal [10] 0.09

⇤̃thr ~� IMRPhenomPv2NRtidal [10] 0.69

⇤̃thr ~�|Mmax
TOV � 1.97M� IMRPhenomPv2NRtidal [10] 0.44

⇤̃thr ⇤̃ TaylorF2 [4] 0.54

⇤̃thr ⇤̃ IMRPhenomPv2NRtidal [4] 0.58

⇤̃thr ⇤̃ IMRPhenomDNRtidal [4] 0.59

⇤̃thr ⇤̃ SEOBNRT [4] 0.60

⇤̃thr ⇤s IMRPhenomPv2NRtidal [10] 0.74

for the analysis and on the inference method employed.
The data from the EOS inference employed also in the
threshold-mass analysis give the smalleest prompt col-
lapse probability as a result of imposing the maximum
mass constraint. If the constraint is relaxed the prob-
ability grows to 69%. All the analysis performing in-
ference on ⇤̃ give prompt collapse probability between
54% and 60%; the waveform approximants estimating
the largest ⇤̃ clearly give the smaller probabilities. The
largest prompt collapse probability is obtained using the
EOS-insensitive relations in the ⇤s inference and employ-
ing the ⇤̃ threshold. This can be understood as the com-
bined e↵ect of using IMRPhenomPv2NRtidal as a tem-
plate waveform model, which tends to introduce a sys-
tematic bias favouring prompt collapse (see discussion in
Appendix B) and not having a constraint on Mmax

TOV
.

Resulting values for the probability of prompt collapse
PPC from the above analyses are listed in Table II. We

observe that the parameters of GW170817 are measured
around the threshold region both for the threshold-mass
method and for the threshold-⇤̃ method. Thus, overall
there seems to be no definite answer as to whether the
BNS merger was followed by a prompt collapse to a BH.
However, if we focus on the analyses where the Mmax

TOV

constraint can be imposed, to account for the mass mea-
surement of PSR J0348+0432, we see that the prompt-
collapse hypothesis is strongly disfavoured.

We also point out that the GW170817 inference of tidal
e↵ects using various point-mass waveform approximants
combined with NRTidal gives posteriors with a bimodal
distribution peaked around ⇤̃ ⇠ 200 and ⇤̃ ⇠ 600 and
support up to ⇤̃ ⇠ 800; while using TaylorF2 and EOB
approximants it gives a single broader peak at ⇤̃ ⇠ 300
[4, 5]. Independent analysis confirm these findings [73–
75].

VI. CONCLUSION

We proposed two methods to infer prompt black hole
formation from the analysis of the inspiral gravitational
wave of a binary neutron merger. Both methods rely
on numerical-relativity models of the prompt collapse
threshold for quasicircular and nonspinning binary neu-
tron star merger. The methods are validated with a set
of 17 injection and recovery experiments, and verified
against data from numerical relativity simulations. All
the signals were correctly recovered with the exception
of few cases close or at the collapse threshold. Improv-
ing such cases will require more precise numerical rel-
ativity models and simulations. We conclude that our
analysis could be robustly applied to GW170817-like sig-
nals (single events) captured by advanced LIGO-Virgo
at designed sensitivity. We also point out that waveform
systematics may introduce important biases in the near-
threshold region.

Application of these two methods on the GW170817
data gives no definitive answer to whether the BNS
merger was followed by a prompt collapse into a BH, as
the recovered masses and tidal parameters of the binary
appear to lie in the vicinity of the threshold. However,
if a constraint is applied on the maximum irrotational
NS mass supported by the EOS, that is compatible with
the mass measurements of PSR J0348+0432 and PSR
J0740+6620, then we observe a strong preference against
the prompt collapse hypothesis.
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FIG. 1. One-to-one comparison of NS-NS and NS-BH with Q = 1.2
and the DD2 EoS. Upper panels: Matter density (cgs units) and com-
position (electron fraction Ye), 3ms after merger for our NS-NS (left)
and NS-BH (right) simulations. Low-density, high-Ye polar regions
are not resolved numerically in the NS-BH simulation. Lower pan-
els: Kilonova bolometric lightcurves (blue), including results for our
Q = 1 simulations (red). Shaded regions indicate the large uncer-
tainties in the modelling. We assume that the total ejecta mass is
10–50% of Mrem measured in the simulations and the dynamical
ejecta, and that the fraction of the blue component is ⇠ 0 – 90%, to
conservatively take into account uncertainties in the composition of
the post-merger outflows (see text). The data with error bars from
observations of GW170817 are taken from [1].

mate neutrino transport algorithm [41, 42]. We measure the
mass, composition, and velocity of the matter outflows dur-
ing the merger for all simulations, and Mrem, the post-merger
remnant mass excluding the final object. For the Q = 1.2
systems, we also extract the GWs. The top panels of Fig. 1
shows the result of the merger: matter surrounding a hyper-
massive NS or BH for the NS-NS or NS-BH systems respec-
tively. For Q = 1 (1.2) we measure Mrem ⇠ 0.08 (0.15)M�
for the NS-NS binaries and Mrem ⇠ 0.03(0.13)M� for the
NS-BH binaries. In all simulations, a small amount of cold,
neutron-rich material is dynamically ejected in the equatorial
plane by the merger: 0.002M� (0.004M�) for NS-NS, and
less than 0.001M� for NS-BH binaries. Less neutron-rich
polar ejecta is observed, but in the absence of magnetic fields

FIG. 2. Tidal effects during an inspiral in the GW phase when com-
pared to a BH-BH as a function of time (top) and GW frequency
(bottom) for a 1.2M� � 1.44M� system. Grey curves are our new
NR results, with the shaded region indicating the numerical uncer-
tainties (for NS-NS we have only one resolution); curves with leg-
ends are the predictions from the model SEOBNRv4T. Tidal effects
accelerate the phase accumulation, hence the different signs when
comparing to a BH-BH at the same time or frequency.

its mass is negligible (and not resolved in the simulations); see
[43]. Note that none of our simulations produce a relativistic
jet, e.g., as observed for GW170817 [44, 45], which is unsur-
prising given that our simulations do not include any MHD
effects (see [46] for incipient jets in a NS-BH simulation).

Tidal effects in the GWs. For binaries comprising com-
pact objects of only a few solar masses with similar signal-to-
noise ratios as GW170817, current GW detectors are sensitive
only to the GWs generated during their inspiral [7]. In con-
trast to vacuum BH-BH mergers, an important signature of
NS matter in the GWs is due to tidal effects, where the ob-
jects’ deformations produce a small change in the GWs. The
dominant tidal GW signatures are characterized by a combina-
tion of each object’s EoS-dependent tidal deformability [47]
� = (2/3)k2R5/G, where G is Newton’s constant, and k2
and R are the Love number and radius.

Measurements of GW source parameters are very sensitive
to the GW phase evolution (e.g., [48–50]). Figure 2 illustrates
the impact of tidal effects on the GW phasing over an inspiral
(up to peak GW amplitude) for a 1.44M� � 1.2M� binary.
Grey curves show the results from the new NR simulations
where the grey shaded region indicates the uncertainty due to
finite resolution; the data were extended to low frequencies by
matching to a theoretical model (known as SEOBNRv4T [51,
52]), where tidal effects are described analytically and thus
apply to both NS-NS and NS-BH. The zero-line in Figure 2 is
a BBH GW constructed by matching NR data from the SXS
catalog [53, 54] to the theoretical SEOBNRv4 model [55–57]
at low frequency. As can be seen from Fig. 2 a NS-BH binary
with the relatively stiff DD2 EoS (grey shaded region) may

MULTIMESSENGER STUDIES WITH BNS MERGERS
➤ GW + EM coincident detection (e.g. GW170817) should 

lead to GW + EM coherent data analysis 

➤ Identification of EM source -> fixed sky location, constr. 
distance 

➤ EM spectrum -> inclination, intr. source properties 

➤ Modelling via high-res NR simulations w/ microphysics 

➤ e.g. Λ-Μdisk correlation Radice+ ApJL 852:L29 (2018) 
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tension with core-collapse supernova theory (e.g., Radice
et al. 2017b). Finally, we remark that the GW data al-
ready places strong limits on the component of the NS
spin aligned with the orbital angular momentum (Abbott
et al. 2017b).
LIGO and Virgo observations also constrain tidal ef-

fects in the inspiral by placing an upper bound on the
dimensionless quantity (Flanagan & Hinderer 2008; Fa-
vata 2014)

⇤̃ =
16

13

"
(MA + 12MB)M4

A⇤̃A

(MA +MB)5
+ (A $ B)

#
, (1)

which is inferred to be smaller than 800 at the 90% con-
fidence level (Abbott et al. 2017b). In the previous equa-
tion

⇤̃i =
2

3
k(i)2

✓
c2

G

◆✓
Ri

Mi

◆�5
, i = A,B (2)

are the dimensionless quadrupolar tidal parameters

(or tidal polarizability coe�cients), where k(i)2 are the
quadrupolar Love numbers for each star. The fate of
the merger remnant is not known. The postmerger high-
frequency GWs were too weak to be detected, so infor-
mation on the remnant is not available from GW obser-
vations (Abbott et al. 2017d).
The optical and infrared electromagnetic (EM) data

is well explained by the radioactive decay of ⇠0.05 M�
of material (Chornock et al. 2017; Cowperthwaite et al.
2017; Drout et al. 2017; Nicholl et al. 2017; Rosswog et al.
2017; Tanaka et al. 2017; Tanvir et al. 2017; Perego et al.
2017; Villar et al. 2017). UV/optical light curve model-
ing of the early emissions, hours to days after merger,
points to the presence of a relatively fast, v ' 0.3 c,
M ' 0.02 M�, component of the outflow (Cowperth-
waite et al. 2017; Drout et al. 2017; Nicholl et al. 2017;
Perego et al. 2017; Villar et al. 2017). The modeling of
the later optical/infrared data points to the presence of
at least another component of the outflow with v ' 0.1 c
and M ' 0.04 M� (Chornock et al. 2017; Cowperthwaite
et al. 2017; Drout et al. 2017; Perego et al. 2017; Villar
et al. 2017). The inferred e↵ective opacities for these
two (or more) outflow components suggest that they had
di↵erent compositions and, possibly, di↵erent origins.
GR simulations indicate that only up to ⇠0.01 M� of

material can be unbound dynamically during the merger
itself (Hotokezaka et al. 2013; Bauswein et al. 2013b;
Radice et al. 2016; Lehner et al. 2016; Sekiguchi et al.
2016; Dietrich et al. 2017b; Bovard et al. 2017), although
larger ejecta masses can be reached for small mass ratios
q . 0.6 (Dietrich et al. 2017c). The largest ejecta masses
are obtained for soft EOSs. In these cases, the outflows
are fast, v ' (0.2�0.4) c, shock heated, and re-processed
by neutrinos (Sekiguchi et al. 2015; Radice et al. 2016;
Foucart et al. 2016). Consequently, the dynamic ejecta
can potentially explain the UV/optical emissions in the
first hours to days. The inferred properties for the out-
flow component powering the optical/infrared emission
on a days to weeks timescale are more easily explained by
neutrino, viscous, or magnetically driven outflows from
the merger remnant (Dessart et al. 2009; Metzger et al.
2008, 2009; Fernández & Metzger 2013; Siegel et al. 2014;
Just et al. 2015; Metzger & Fernández 2014; Perego et al.
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Figure 1. Remnant disk plus dynamic ejecta masses (upper
panel) and BH formation time (lower panel) plotted against the
tidal parameter ⇤̃ (Eq. 1). For models that do not collapse during
our simulation time, we give a lower limit. The horizontal dashed
line shows a conservative lower limit for AT2017gfo, 0.05M�, ob-
tained assuming that the entire disk is unbound. The vertical
dotted line is ⇤̃ = 400. Errors on Mdisk and Mej are estimated
following Eq. (3) and are added in quadrature.

2014; Wu et al. 2016; Siegel & Metzger 2017; Lippuner
et al. 2017). Detailed modeling suggests that a disk
mass of at least 0.08M� is required to explain AT2017gfo
(Perego et al. 2017).

3. SIMULATION RESULTS

We perform 29 merger simulations using the GR hy-
drodynamics code WhiskyTHC (Radice & Rezzolla 2012;
Radice et al. 2014a,b). We consider both equal and
unequal mass configurations, and we adopt 4 tempera-
ture and composition dependent nuclear EOSs spanning
the range of the nuclear uncertainties: the DD2 EOS
(Typel et al. 2010; Hempel & Scha↵ner-Bielich 2010),
the BHB⇤� EOS (Banik et al. 2014), the LS220 EOS
(Lattimer & Swesty 1991), and the SFHo EOS (Steiner
et al. 2013). This is the largest dataset of simulations
performed in full-GR and with realistic microphysics to
date. Neutrino cooling and Ye evolution are treated as
discussed in Radice et al. (2016). The computational
setup is the same as in Radice et al. (2017a). The resolu-
tion of the grid regions covering the NSs and the merger
remnant is ' 185 m. We verify the robustness of our
results and estimate the numerical uncertainties by per-
forming 6 additional simulations at 25% higher resolu-
tion. We conservatively estimate finite-resolution error
on the disk and dynamic ejecta masses to be

�Mdisk,ej = 0.5Mdisk,ej + ✏disk,ej , (3)

where ✏disk = 5 ⇥ 10�4M� and ✏ej = 5 ⇥ 10�5M�. A
more detailed account of these simulations will be given
elsewhere (Radice et al., in prep. 2017). A summary of
the simulations is given in Tab. 1.
We compute the mass of the dynamic ejecta and of the

remnant accretion disk for each model. Our results are
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Figure 2. Tidal parameter ⇤̃ (Eq. 1) as a function of the mass
ratio q for a fixed chirp mass Mchirp = 1.188 M�. The shaded
region shows the region excluded with 90% confidence level by the
LIGO-Virgo observations (Abbott et al. 2017b), with the addi-
tional constraint of ⇤̃ � 400 derived from the simulations and the
EM observations. EOSs whose curves enter this region are disfa-
vored. EOSs are sorted for decreasing ⇤̃ at q = 1, i.e., H4 is the
sti↵est EOS in our sample, and FPS is the softest.

Fig. 2. There, we also show the upper bound on ⇤̃ from
the GW observations as well as the newly estimated lower
bound from the EM data. On the one hand, sti↵ EOSs,
such as H4 and HB, are already disfavored on the basis
of the GW data alone. On the other hand, EOS as soft
as FPS and APR4 are also tentatively excluded on the
basis of the EM observations6. Soft EOS commonly used
in simulations, such as SFHo and SLy, lay at the lower
boundary of the allowed region, while DD2 and BHB⇤�
are on the upper boundary.
Our results show that numerical relativity simulations

are key to exploiting the potential of multimessenger ob-
servations. While GW data bounds the tidal deforma-
bility of NSs from above, the EM data and our simula-
tions bound it from below. The result is a competitive
constraint already after the first detection of a merger
event. Our method is general, it can be applied to future
observations and used to inform the priors used in the
GW data analysis. We anticipate that, with more obser-
vations and more precise simulations, the bounds on the
tidal deformability of NSs will be further improved.
The physics setting the lower bound on ⇤̃ is well un-

derstood and under control in our simulations. However,
a more extended analysis taking into account the un-
certainties in the interpretation of the EM observations
and in the simulations is a necessary next step. For ex-
ample, large components of the NS spins parallel to the
orbital plane are not expected, but also not constrained
for GW170817. We cannot exclude that, if present, they
will a↵ect our results. Moreover, there are indication
that small mass ratio binaries q . 0.8 might also form
disks with masses up to ⇠0.1M� (Shibata et al. 2017).

6 Note that FPS is also excluded because it predicts a maximum
NS mass smaller than 2 M�.

If confirmed, this would imply that the lower bound on
⇤̃ might depend on q. Note that the upper-bound on
⇤̃ estimated from the GW signal is also likely to have
some dependency on q. Consequently, a more precise de-
termination of the exclusion region on ⇤̃ will necessarily
require a full Bayesian analysis of the GW data using ⇤̃
priors informed by numerical-relativity results. We plan
to improve our modeling by means of new simulations
exploring the set of binary progenitor parameters com-
patible with GW170817 and the associated EM counter-
parts.
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Fig. 2. There, we also show the upper bound on ⇤̃ from
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bound from the EM data. On the one hand, sti↵ EOSs,
such as H4 and HB, are already disfavored on the basis
of the GW data alone. On the other hand, EOS as soft
as FPS and APR4 are also tentatively excluded on the
basis of the EM observations6. Soft EOS commonly used
in simulations, such as SFHo and SLy, lay at the lower
boundary of the allowed region, while DD2 and BHB⇤�
are on the upper boundary.
Our results show that numerical relativity simulations

are key to exploiting the potential of multimessenger ob-
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bility of NSs from above, the EM data and our simula-
tions bound it from below. The result is a competitive
constraint already after the first detection of a merger
event. Our method is general, it can be applied to future
observations and used to inform the priors used in the
GW data analysis. We anticipate that, with more obser-
vations and more precise simulations, the bounds on the
tidal deformability of NSs will be further improved.
The physics setting the lower bound on ⇤̃ is well un-

derstood and under control in our simulations. However,
a more extended analysis taking into account the un-
certainties in the interpretation of the EM observations
and in the simulations is a necessary next step. For ex-
ample, large components of the NS spins parallel to the
orbital plane are not expected, but also not constrained
for GW170817. We cannot exclude that, if present, they
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Figure 2. Tidal parameter ⇤̃ (Eq. 1) as a function of the mass
ratio q for a fixed chirp mass Mchirp = 1.188 M�. The shaded
region shows the region excluded with 90% confidence level by the
LIGO-Virgo observations (Abbott et al. 2017b), with the addi-
tional constraint of ⇤̃ � 400 derived from the simulations and the
EM observations. EOSs whose curves enter this region are disfa-
vored. EOSs are sorted for decreasing ⇤̃ at q = 1, i.e., H4 is the
sti↵est EOS in our sample, and FPS is the softest.

Fig. 2. There, we also show the upper bound on ⇤̃ from
the GW observations as well as the newly estimated lower
bound from the EM data. On the one hand, sti↵ EOSs,
such as H4 and HB, are already disfavored on the basis
of the GW data alone. On the other hand, EOS as soft
as FPS and APR4 are also tentatively excluded on the
basis of the EM observations6. Soft EOS commonly used
in simulations, such as SFHo and SLy, lay at the lower
boundary of the allowed region, while DD2 and BHB⇤�
are on the upper boundary.
Our results show that numerical relativity simulations

are key to exploiting the potential of multimessenger ob-
servations. While GW data bounds the tidal deforma-
bility of NSs from above, the EM data and our simula-
tions bound it from below. The result is a competitive
constraint already after the first detection of a merger
event. Our method is general, it can be applied to future
observations and used to inform the priors used in the
GW data analysis. We anticipate that, with more obser-
vations and more precise simulations, the bounds on the
tidal deformability of NSs will be further improved.
The physics setting the lower bound on ⇤̃ is well un-

derstood and under control in our simulations. However,
a more extended analysis taking into account the un-
certainties in the interpretation of the EM observations
and in the simulations is a necessary next step. For ex-
ample, large components of the NS spins parallel to the
orbital plane are not expected, but also not constrained
for GW170817. We cannot exclude that, if present, they
will a↵ect our results. Moreover, there are indication
that small mass ratio binaries q . 0.8 might also form
disks with masses up to ⇠0.1M� (Shibata et al. 2017).

6 Note that FPS is also excluded because it predicts a maximum
NS mass smaller than 2 M�.

If confirmed, this would imply that the lower bound on
⇤̃ might depend on q. Note that the upper-bound on
⇤̃ estimated from the GW signal is also likely to have
some dependency on q. Consequently, a more precise de-
termination of the exclusion region on ⇤̃ will necessarily
require a full Bayesian analysis of the GW data using ⇤̃
priors informed by numerical-relativity results. We plan
to improve our modeling by means of new simulations
exploring the set of binary progenitor parameters com-
patible with GW170817 and the associated EM counter-
parts.
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Figure 2. Tidal parameter ⇤̃ (Eq. 1) as a function of the mass
ratio q for a fixed chirp mass Mchirp = 1.188 M�. The shaded
region shows the region excluded with 90% confidence level by the
LIGO-Virgo observations (Abbott et al. 2017b), with the addi-
tional constraint of ⇤̃ � 400 derived from the simulations and the
EM observations. EOSs whose curves enter this region are disfa-
vored. EOSs are sorted for decreasing ⇤̃ at q = 1, i.e., H4 is the
sti↵est EOS in our sample, and FPS is the softest.

Fig. 2. There, we also show the upper bound on ⇤̃ from
the GW observations as well as the newly estimated lower
bound from the EM data. On the one hand, sti↵ EOSs,
such as H4 and HB, are already disfavored on the basis
of the GW data alone. On the other hand, EOS as soft
as FPS and APR4 are also tentatively excluded on the
basis of the EM observations6. Soft EOS commonly used
in simulations, such as SFHo and SLy, lay at the lower
boundary of the allowed region, while DD2 and BHB⇤�
are on the upper boundary.
Our results show that numerical relativity simulations

are key to exploiting the potential of multimessenger ob-
servations. While GW data bounds the tidal deforma-
bility of NSs from above, the EM data and our simula-
tions bound it from below. The result is a competitive
constraint already after the first detection of a merger
event. Our method is general, it can be applied to future
observations and used to inform the priors used in the
GW data analysis. We anticipate that, with more obser-
vations and more precise simulations, the bounds on the
tidal deformability of NSs will be further improved.
The physics setting the lower bound on ⇤̃ is well un-

derstood and under control in our simulations. However,
a more extended analysis taking into account the un-
certainties in the interpretation of the EM observations
and in the simulations is a necessary next step. For ex-
ample, large components of the NS spins parallel to the
orbital plane are not expected, but also not constrained
for GW170817. We cannot exclude that, if present, they
will a↵ect our results. Moreover, there are indication
that small mass ratio binaries q . 0.8 might also form
disks with masses up to ⇠0.1M� (Shibata et al. 2017).

6 Note that FPS is also excluded because it predicts a maximum
NS mass smaller than 2 M�.

If confirmed, this would imply that the lower bound on
⇤̃ might depend on q. Note that the upper-bound on
⇤̃ estimated from the GW signal is also likely to have
some dependency on q. Consequently, a more precise de-
termination of the exclusion region on ⇤̃ will necessarily
require a full Bayesian analysis of the GW data using ⇤̃
priors informed by numerical-relativity results. We plan
to improve our modeling by means of new simulations
exploring the set of binary progenitor parameters com-
patible with GW170817 and the associated EM counter-
parts.
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Figure 2. Tidal parameter ⇤̃ (Eq. 1) as a function of the mass
ratio q for a fixed chirp mass Mchirp = 1.188 M�. The shaded
region shows the region excluded with 90% confidence level by the
LIGO-Virgo observations (Abbott et al. 2017b), with the addi-
tional constraint of ⇤̃ � 400 derived from the simulations and the
EM observations. EOSs whose curves enter this region are disfa-
vored. EOSs are sorted for decreasing ⇤̃ at q = 1, i.e., H4 is the
sti↵est EOS in our sample, and FPS is the softest.

Fig. 2. There, we also show the upper bound on ⇤̃ from
the GW observations as well as the newly estimated lower
bound from the EM data. On the one hand, sti↵ EOSs,
such as H4 and HB, are already disfavored on the basis
of the GW data alone. On the other hand, EOS as soft
as FPS and APR4 are also tentatively excluded on the
basis of the EM observations6. Soft EOS commonly used
in simulations, such as SFHo and SLy, lay at the lower
boundary of the allowed region, while DD2 and BHB⇤�
are on the upper boundary.
Our results show that numerical relativity simulations

are key to exploiting the potential of multimessenger ob-
servations. While GW data bounds the tidal deforma-
bility of NSs from above, the EM data and our simula-
tions bound it from below. The result is a competitive
constraint already after the first detection of a merger
event. Our method is general, it can be applied to future
observations and used to inform the priors used in the
GW data analysis. We anticipate that, with more obser-
vations and more precise simulations, the bounds on the
tidal deformability of NSs will be further improved.
The physics setting the lower bound on ⇤̃ is well un-

derstood and under control in our simulations. However,
a more extended analysis taking into account the un-
certainties in the interpretation of the EM observations
and in the simulations is a necessary next step. For ex-
ample, large components of the NS spins parallel to the
orbital plane are not expected, but also not constrained
for GW170817. We cannot exclude that, if present, they
will a↵ect our results. Moreover, there are indication
that small mass ratio binaries q . 0.8 might also form
disks with masses up to ⇠0.1M� (Shibata et al. 2017).

6 Note that FPS is also excluded because it predicts a maximum
NS mass smaller than 2 M�.

If confirmed, this would imply that the lower bound on
⇤̃ might depend on q. Note that the upper-bound on
⇤̃ estimated from the GW signal is also likely to have
some dependency on q. Consequently, a more precise de-
termination of the exclusion region on ⇤̃ will necessarily
require a full Bayesian analysis of the GW data using ⇤̃
priors informed by numerical-relativity results. We plan
to improve our modeling by means of new simulations
exploring the set of binary progenitor parameters com-
patible with GW170817 and the associated EM counter-
parts.
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INFORMATION FROM THE MERGER AND BEYOND
➤ PM inspiral+matter effects: clean perturbative formulation 

➤ Violent merger of relativistic balls of matter at supra-
nuclear densities: not so clean… NR input is crucial! 

➤ Characteristic peaks in post-merger 

➤ Modeling post-merger signal is an active research field
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TABLE I. NRPM model parameters and their ranges, coe�cients of NR fits with rational functions (F0,n1,n2,d1,d2) or with
linear functions (p0, p1), and fits’ �2.

Parameter Description Range NR fit model c F0 n1 n2 d1 d2 p0 p1 �2

f̂mrg Merger frequency [0.013872, 0.027953] Rational 3199.8 0.033184 0.0013067 0.00 0.0050064 0.00 - - 1.539⇥ 10�5

f̂2 PM peak frequency [0.021789, 0.048804] Rational -52.655 7.6356 0.066645 4.0146 ⇥ 10�5 10.949 0.040276 - 9.702⇥ 10�5

f̂2�0 PM secondary frequency [0.013756, 0.037838] Rational 5767.6 0.052182 0.002843 0.00 0.012868 0.00 - - 1.033⇥ 10�4

f̂2+0 PM secondary frequency [0.029628, 0.071988] Rational 1875.5 4.5722 0.060385 1.0661 ⇥ 10�4 4.1506 0.027552 - - 5.213⇥ 10�4

Âmrg Merger amplitude [0.17296, 0.27331] Rational 5215.0 0.34910 0.019272 -4.3729 ⇥ 10�6 0.028266 9.3643 ⇥ 10�6 - - 1.421⇥ 10�4

Â0 1st mininum of PM amplitude [0.0023760, 0.049993] Linear -6735.8 - - - - - 0.032454 -6.8029 ⇥ 10�5 3.877⇥ 10�3

Â1 1st maxinum of PM amplitude [0.059723, 0.21650] Linear 58542.0 - - - - - 0.17657 -3.7794 ⇥ 10�5 1.308⇥ 10�3

Â2 2nd mininum of PM amplitude [0.016075, 0.15814] Linear -623.09 - - - - - 0.11601 -1.7376 ⇥ 10�4 4.700⇥ 10�3

Â3 2nd maxinum of PM amplitude [0.049711, 0.19158] Linear 4486.2 - - - - - 0.15894 -1.7317 ⇥ 10�4 4.177⇥ 10�3

t̂mrg Merger time 0 - - - - - - - - - -

t̂0 Time of Â0 [39.488, 77.146] Linear 241.88 - - - - - 37.181 0.086789 0.1509

t̂1 Time of Â1 [56.489, 162.76] Linear -4899.3 - - - - - 83.045 0.16377 2.124

t̂2 Time of Â2 [71.284, 416.15] Linear -6027.2 - - - - - 121.34 0.3163 18.17

t̂3 Time of Â3 [87.423, 506.15] Linear -6312.6 - - - - - 157.29 0.48347 18.28

t̂4 Time of Â = Âmrg ⇥ 10�2 [264.14, 5011.6] Linear 8573.6 - - - - - 1375.0 1.8460 413.3

FIG. 3. Characteristic frequencies information from NR simulations. Markers represent the frequencies extracted from the NR
data and the uncertainties are estimated using simulations at di↵erent resolutions; the black lines are the fits and the grey
bands are the 90% credible regions. Left and right panels show the same data: the colors on the left panel correspond to the
EOS variation, on the right panel to the mass ratio.

As an example, the peak frequency fits are shown in
Fig. 3. The uncertainty of the NR data computed from
simulations at multiple grid-resolutions is shown in the
plot as bars, if available. Note the f̂2 peaks determina-
tion is a↵ected by a further error of ⇠2� 8% due to the
discrete Fourier transform; larger errors a↵ect the f̂2±0

determination. The �
2 coe�cients for the frequencies

fit are typically ⇠10�4 (Note the merger frequency has
�
2
⇠ 10�5), but some outliers are visible from the plots

at small T
2
. We note that most of these data points

correspond to low-resolution simulations for which error-

bars either cannot be computed (one resolution avail-
able) or are unreliable (two low resolutions available).
For example, the ENG simulation at T

2
⇠ 80 is a high-

mass M = (1.7 + 1.7)M� BNS simulated at a maximal
grid resolution of h ⇡ 0.365 km that does not guaran-
tee convergence even for the inspiral-merger (cf. [78–80]
and Appendix B). The frequency f̂2+0 model is the most
uncertain for the available data.
Table I (see also Appendix A) shows that, while post-

merger amplitude fits are well captured by the model
(�2

⇠ 10�3), the postmerger times are more uncertain
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FIG. 9. Binary neutron stars described by the BHB⇤�
and the DD2 EOS and simulated signals [58]. Top: Mass
of individual spherical equilibrium NS as a function of the
central density. Markers refer to simulated BNS. Bottom:
Real part of the (2, 2) waveforms for BNSs with mass M =
(1.50 + 1.50)M�.

M = 2.5M� pair and “high mass” with M = 3M� pair.
The individual NS of the low mass BNS have central den-
sity ⇢ ⇡ 2.35⇢0 and there are essentially no ⇤-hyperons
at these densities in the BHB⇤� EOS. The BNS rem-
nants relative to the latter EOS reach approximately
⇢ ⇡ 2.80⇢0 at which BHB⇤� di↵ers from the DD2 EOS.
The GW postmerger signals have very similar f2 frequen-
cies, but they are in principle distinguishable at su�-
ciently high SNR [58]. The individual NS of the high
mass BNS have ⇢ ⇡ 2.75⇢0; the presence of ⇤-hyperons
significantly a↵ect the postmerger dynamics. The DD2
binary produces a remnant surviving for &20 ms while
the BHB⇤� binary collapse within ⇠2 ms as a result of
the EOS softening. The postmerger signals are conse-
quently very di↵erent, as illustrated in Fig. 9 (bottom
panel).

Figure 10 shows 68% and 95% confidence regions of
the marginal posterior distributions in the (f2,T

2
) plane

as summary plot of the inference results at two di↵erent
SNR; the left panels refers to the low mass BNSs, rigth
panels to high masses. The postmerger analysis of the
low mass BNSs returns the injected values and it agrees
with the inference from the inspiral analysis. At SNR 16
some deviations are visibile in the posteriors distribution
indicating that such small di↵erences might be detectable
with more accurate models and measurements.

The postmerger analysis of the high mass DD2 M =
(1.50+1.50)M� shows that the injected frequency is cor-
rectly captured by the recovery, while the frequency esti-
mated from the inspiral-merger analysis and the fit is
slightly overestimated (as expected, Cf. Fig. 5). As
a consequence of this, the 

T
2

posterior from the post-
merger analysis is not compatible with the inspiral mea-

surement at the minimal SNR (upper right panel). How-
ever, at higher SNR the correct T

2
is consistently recov-

ered within the 68% confidence region (lower right panel).
For the BHB⇤� high mass M = (1.50+1.50)M� case,

we find instead inconsistencies between 
T
2

and f2 pos-
teriors computed from the IM and PM analysis respec-
tively. The postmerger analysis return a f2 higher than
the injected signal, especially at high SNR. At the same
time, the 

T
2

distribution from the postmerger analysis
if shifted towards lower values at larger SNR and rails
against the prompt-collapse value 

T
2
⇠ 70, significantly

departing from the inspiral measurement 
T

2 IM
= 93+2

�3
.

The templated-analysis of the postmerger clearly tries to
fit the higher frequencies of the signal (f2 = 3.39 kHz)
and the short postmerger signal collapsing to BH. The
high frequencies of the BHB⇤� binary are incompatible
with the quasiuniversal of the NRPM model, due the phys-
ical softening of the EOS. Thus, the analysis the post-
merger signal e↵ectively implies a softer EOS then the
analysis of the inspiral implies.
In a real GW measurement the di↵erence in the in-

ferences of T
2

(PM vs IMPM results in the high-mass
BHB⇤� case) will give an indication of the EOS soften-
ing at densities larger than those of the individual NS.
The constraint follows from the breaking of the quasi-
universal relation f2(T

2
), but the latter does not nec-

essarily imply the presence of new degrees of freedom
or phase transitions (Cf. [59]). The case studies suggest
that a measurement at SNR &11 leads to deviations from
the expected values larger than the 90% credible regions,
which is su�cient to make a prediction with significance
greater than one-sigma level.

VI. CONCLUSION

NRPM is a time-domain analytical model for postmerger
waveforms with minimal, but physically motivated, pa-
rameters describing the morphology of the postmerger
waveforms in the binary (instrinsic) parameter space
defined by Eq. (6). Combined with inspiral-merger
e↵ective-one-body waveforms, it forms an approximant
coherent in phase on the full frequency range observed by
ground-based interferometers. Future directions in the
modeling of postmerger waveform will include the exten-
sion of the CoRe database and the application of statisti-
cal/data reduction methods for the construction of more
accurate and realiable templates[13, 44]. Central goals
for numerical simulations are a better characterization of
the prompt collapse threshold and error-controlled post-
merger waveforms with microphysical EOS and unequal
masses.

The current accuracy of the model seems su�cient for
the recovery of signals with postmerger SNR ⇠9. These
results, although for a limited set of injections, suggest
that Bayesian template-based analyses of the postmerger
require higher SNRs than morphology independent anal-
ysis [14, 42]. The latter references claim that about 90%



CONCLUSIONS
➤ BNS detections can probe properties of cold matter at supranuclear densities 

➤ GW170817 already gave very interesting results 

➤ Making use of the assumption that NSs obey the same EoS further improves 
measurements 

➤ Continuously improving waveform models with matter effects (TEOBResumS) 

➤ Need high-quality input from NR simulations with matter 

➤ Matter breaks scale-invariance and allows for new standard-siren cosmography 

➤ Further gain if information from EM observations is folded in (coherently and robustly) 

➤ Many more BNS detections in O3 and beyond will improve constraints 

➤ Looking forward to results from NICER! 

➤ We are officially in the era of GW astrophysics & cosmology (and even GW nuclear 
physics?). Posterior samples available online!

�23
#O3ishere



MODELLING MATTER EFFECTS IN THE WAVEFORM
➤ Point-Mass baseline: IMRPhenomPv2 

➤ Post-Newtonian inspiral+ fit to EOB/NR 

➤ intermediate post-inspiral and merger-
ringdown fit to EOB/NR 

➤ spins w/ one-parameter precession effects 

➤ Matter effects 

➤ PN: Hinderer+, Flanagan+, Poisson+, 
Ferrari+, Gualtieri+, …   

➤ EOB: Damour+, Nagar+, Buonanno+, …  

➤ NR simulations: Bernuzzi+, Read+, 
Rezzolla+, Hotokezaka+, Dietrich+, …  

➤ NRTidal: NR-tuned tidal & spin-Q effects 
[Dietrich+ arXiv:1712.02992, arXiv:1804.02235]
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FIG. 2. Hybridization of the SLy0.11|0.11
1.35|1.35 configuration with

the TEOBResumS model. The alignment interval is marked
by vertical dashed lines. The TEOBResumS EOB waveform is
shown as a red dot-dashed curve and the NR waveform as a
blue dashed curve. The final hybrid combines the long inspi-
ral from the EOB waveform, which includes several hundred
cycles (not shown in the figure), and the late inspiral, as well
as the post-merger phase of the NR waveform.

ing

I(�t, ��) =
Z tf

ti

dt|�NR(t)� �EOB(t+ �t) + ��|2 (12)

over the frequency interval I!̂ = [!̂i, !̂f ] = [0.04, 0.06].
Once the waveforms are aligned, we perform a smooth
transition from the EOB data to the NR data within I!̂:

hhyb(t) =

8
><

>:

hEOB : !̂  !̂i

hNRH(t) + hEOB[1�H(t)] : !̂i  !̂  !̂f

hNR : !̂ � !̂f

(13)
with the Hann window function

H(t) :=
1

2


1� cos

✓
⇡
t� ti

tf � ti

◆�
, (14)

with ti, tf denoting the times corresponding to !̂i, !̂f ,
cf. [25]. In Fig. 2 we present, as an example, the hybrid

construction for the SLy0.11|0.11
1.35|1.35 configuration, with the

alignment interval marked by vertical dashed lines.

IV. VALIDATION OF FREQUENCY DOMAIN
MODEL

A. Mismatch computation

To quantify the performance of the NRTidal approxi-
mants, we compute the mismatch

F̄ = 1�max
�c,tc

(h1(�c, tc)|h2)p
(h1|h1)(h2|h2)

, (15)

where �c, tc are an arbitrary phase and time shift, be-
tween the approximants themselves and the hybrid wave-
forms constructed in Sec. III. The noise-weighted overlap

is defined as

(h1|h2) = 4<
Z fmax

fmin

h̃1(f)h̃2(f)

Sn(f)
df . (16)

Sn(f) gives the spectral density of the detector noise.
We used the Advanced LIGO zero-detuning, high-power
(ZERO_DET_high_P) noise curve of [82] for our analysis.
In general, the value of F̄ indicates the loss in signal-to-
noise ratio (squared) when the waveforms are aligned in
time and phase. Template banks are usually constructed
such that the maximum value of F̄ across the bank is
0.03. Although it is impossible to relate a mismatch di-
rectly to the bias obtained in parameter estimation, it is
in general a good measure of the performance of a par-
ticular waveform approximant.

1. Variable fmax

In Fig. 3 we report the mismatch between the pro-
posed model approximants and the hybrid waveforms
constructed in Sec. III. In addition to the NRTidal mod-
els and their underlying point-mass baselines, we also
explore the performance of PN based models, in par-
ticular the TaylorT4 and TaylorF2 approximants (see
e.g. [83–86]). To set the stage, we recall that we use
3.5PN-accurate expressions for the non-spinning part of
the phase as well as for the spin-orbit terms [87]. Up to
3PN-accurate, EOS-dependent, self-spin terms [88–90],
that are essential for a conceptually meaningful compari-
son with the TEOBResumS-hybrid waveforms, are included
in both TaylorF2Tides and TaylorT4Tides approximants.
For what concerns the tidal sector, while TaylorT4Tides

only incorporates the LO and NLO tidal corrections (i.e.
corresponding to a 5PN and 6PN terms), in TaylorF2 we
also included the 6.5, 7 and 7.5PN tidal terms as deduced
by Taylor-expanding the tidal EOB model in Ref. [48].
Results for all approximants incorporating tidal ef-

fects are shown with solid lines: TaylorF2Tides (green),
TaylorT4Tides (orange), SEOBNRv4 ROM NRTidal (red),
PhenomD NRTidal (blue), PhenomPv2 NRTidal (cyan).
Results for the corresponding approximants without tidal
e↵ects are shown with dashed lines. The mismatches in
Fig. 3 are computed from fmin = 30Hz up to a vari-
able maximum frequency fmax. We mark the merger fre-
quency extracted from the NR simulations with a ver-
tical, black dashed line. Let us discuss the di↵erent
datasets separately.
Non-spinning, equal-mass configurations: While for

small tidal deformability waveform models not including
tidal e↵ects also achieve mismatches smaller 5 ⇥ 10�3,

e.g. 2B0.00|0.00
1.35|1.35, this is not true for increasing tidal de-

formability (left to right). For sti↵ EOSs waveform
models not including tidal e↵ects are inaccurate and
mismatches can increase more than an order of magni-

tude compared to NRTidal models, e.g. MS1b0.00|0.00
1.35|1.35.

Furthermore, mismatches between TaylorF2Tides and

[Schmidt+ arXiv:1408.1810]

[Taracchini+ arXiv:1311.2544]
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FIG. 8. GW strain for a precessing NR simulation of [94]
(red, solid) for SLy EOS (see text for details) and the
PhenomPv2 NRTidal model (blue, dashed). Results for zero-
inclination (face on) are shown in the two top panels; results
for an inclination of 90� (edge on) are shown in the bottom
panels. We assume a distance to the binary of 100 Mpc.

arguments of Ref. [48] illustrate that it might be pos-
sible to improve the fitting ansätze mentioned above in
Eqs. (5)-(7) by imposing not only the 6PN term, but also
the 6.5PN and 7.5PN ones (that are analytically fully
known) as well as the 7PN one that is currently lack-
ing the waveform amplitude contribution �

22
2

mentioned
above6.

As an example that illustrates how the current fits,
Eqs. (5)-(6), di↵er from the analytically known expres-
sion, let us expand P

NRTidal

 2.5PN
in powers of x up to 2.5PN

order. One finds

P
NRTidal

 2.5PN
= 1+

3115

1248
x�4.22x3/2+23.32x2�111.84x5/2

,

(19)
while the analytically expression of Ref. [48], restricted
to the equal-mass case, reads

 ̂T

2.5PN
= 1 +

3115

1248
x� ⇡x

3/2 +

✓
28024205

3302208
+

20

351
�
22

2

◆
x
2

� 4283

1092
⇡x

5/2 ⇡ 1 +
3115

1248
x� ⇡x

3/2

+
�
8.491 + 0.057�22

2

�
x
2 � 12.32x5/2

. (20)

6 In this respect, one has to remind that one could obtain the
TaylorF2 tidal approximant expanding the EOB analytic phasing
to even higher PN order.

FIG. 9. Computation of the invariant characterization of the
phasing of TEOBResumS, Q!̂, Eq. (21) for an equal-mass, non-
spinning, BBH and for two of the configurations considered.
The e↵ect of tides pushes the BBH curve down. Di↵erences
that looks small on this scale actually correspond to several
radians accumulated in phase di↵erence. The vertical dashed
lines refer to 400 and 700Hz for the two di↵erent systems.

One sees here that the (relative) 1.5PN tidal term incor-
porated in NRTidal is about 30% smaller than the cor-
rect analytical one, while the 2.5PN one is even 9 times
smaller. Assuming, as argued in Ref. [48], that the contri-
bution due to the yet uncalculated waveform amplitude
coe�cient �2

22
can be neglected, the 2PN term is approx-

imately 2.7 times larger than the corresponding analyt-
ical value. This illustrate the strong “e↵ectiveness” of
the NRTidal model already in the PN-regime, with high-
order (e↵ective) PN terms that are required to fix the
imperfect value of the low PN ones. The lack of the cor-
rect low-frequency behavior beyond NLO is per se not a
big concern as the approximant should always be used as
a whole; still our analysis illustrates its e↵ective nature
that should be kept in mind. Consequently, although the
current NRTidal approximant yields rather small mis-
matches, for current standards, with TEOBResumS-based
hybrids, we plan to improve the NRTidal model in the
near future by including beyond-NLO e↵ects.

B. Gauge-invariant phasing analysis

1. Contributions due to tidal e↵ects

Let us discuss, from a di↵erent perspective, how the
tidal phasing yielded by the NRTidal model compares
with the one of the non-hybridized TEOBResumS model.
This comparison is especially interesting at low frequen-
cies, a regime that cannot be touched by NR simulations.
To be conservative, we shall investigate and discuss this
comparison up to dimensionless GW frequency !̂ = 0.06,
which is the upper limit of the frequency interval where
the hybridization is done.

To do the comparison in a straightforward way, we

�24



“I-LOVE-Q”  RELATIONS

➤ NS assumption allows us to make 
use of known “universal” relations 
between NS properties 

➤ These reduce the dimensionality of 
parameter space  

➤ Λ — Q  relation  
Yagi-Yunes [arXiv:1302.4499] 

➤ Λ — C relation  
Maseli+ [arXiv:1304.2052], 
Urbanec+ [arXiv:1301.5925],  
Yagi-Yunes [arXiv:1608.02582]
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Figure 3: (Top) The universal I-Love (left) and Q-Love (right) relations for slowly-rotating neutron stars and quark stars of
1M� < M < M(max) with various equations of state. A single parameter along the curve is the stellar mass or compactness,
which increases to the left of the plots. The solid curves show the fit in Eq. (15). The top axis shows the corresponding stellar
mass of an isolated, non-rotating configuration with the APR equation of state. (Bottom) Absolute fractional di↵erence from
the fit, while the dashed lines show the analytic Newtonian relations in Eq. (11) with n = 0. Observe that the relations are
equation-of-state insensitive to O(1%).

yi xi ai bi ci di ei

Ī �̄2 1.496 0.05951 0.02238 �6.953⇥ 10�4 8.345⇥ 10�6

Ī Q̄ 1.393 0.5471 0.03028 0.01926 4.434⇥ 10�4

Q̄ �̄2 0.1940 0.09163 0.04812 �4.283⇥ 10�3 1.245⇥ 10�4

Table 1: Updated numerical coe�cients for the fitting formula of the I-Love, I-Q and Q-Love relations given in Eq. (15).

The expansion is here in powers of �̄�1/5
2

because �̄2 / C
�5 for incompressible stars. One could attempt to

resum this expansion, for example, through a Padé approximation [164], but this is actually not necessary.
The above equation is an excellent representation of the I-Love relation that cannot be visually distinguished
from the fit used in Fig. 3, except for �̄2 > 10 [164]. Chan et al. [165] extended the above analysis to
self-bound stars, which include quark stars, and found that the I-Love relation is very similar to that for
incompressible stars in the above equation. We will review the results of Chan et al. [165] in more detail in
Sec. 4.4.2.

2.3. No-Hair Relations

The no-hair relations are approximately-universal (i.e. equation-of-state insensitive) inter-relations be-
tween the multipole moments of the exterior metric of a star. In General Relativity, there are two types of
multipole moments: mass and current moments, associated with the energy density and the energy current
density of the fluid respectively. These moments encode information about observable properties of the star
(as measured by an observer at spatial infinity): the ` = 0 mass multipole moment is just the mass of the
star, the ` = 1 current moment is the spin angular momentum of the star and the ` = 2 mass moment
is the quadrupole moment. The odd mass moments and the even current moments vanish by symmetry
considerations.

Two main definitions of multipole moments have been introduced in the literature. The Thorne multipole
moments are defined at spatial infinity through an expansion of the metric tensor in a particular set of

14

[Yagi & Yunes arXiv:1608.02582]
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Figure 15: (Top) I-C (left) and C-Love (right) relations for slowly-rotating neutron stars and quark stars with masses larger
than 1M� and the meaning of symbols being same as in Fig. 3. We also show the fit in Eqs. (77) and (78) as solid curves,
constructed without including quark stars. The dashed curve in the C-Love plane represents the fit created in Maselli et
al. [233] among 3 di↵erent equations of state with masses 1.2M� < M < 2M�. Dotted-dashed curves are analytic expressions
for quark stars derived within the post-Minkowskian approximation [165]. (Bottom) Fractional di↵erence from the fit. Observe
that such a fractional di↵erence, in particular for quark stars (triangles), is much larger than that of the I-Love relation in
Fig. 3, whose maximum equation-of-state variation of ⇠ 0.5% is shown by horizontal dashed lines.

Ī
(n=0)

N = (2/5)C�2 = 0.4C�2 and Ī
(n=1)

N = 2(⇡2 � 6)/(3⇡2)C�2 ⇠ 0.26C�2 respectively [49], leading to a
fractional di↵erence between the two coe�cients of ⇠ 53%.

We next move on to the Q–C relation, the approximate universality of which was discussed in Urbanec
et al. [74]. As in the I-C case, the authors found that the Q-C relation of quark stars is quite di↵erent from
that of neutron stars. We do not present the Q-C relation here because it is qualitatively similar to the Ī

and C relation, shown in the left panel of Fig. 15. A good fit to such a Q-C relation (using neutron star
data only) is given by Eq. (77) with y = Q̄ and the coe�cients a1 = �0.2588, a2 = 0.2274, a3 = 0.0009528
and a4 = �0.0007747. The maximum fractional di↵erence of the neutron star data from the fit is 9% at
most, while the maximum deviation between the quark star and neutron star sequences is 29%.

Let us finally look at the C-Love relation, which was first studied by Maselli et al. [233]. The authors
investigated three di↵erent neutron star (including hybrid star) equations of state with neutron star masses
1.2M�  M  2M�, and found that the relation is approximately universal to within ⇠ 2%. The top right
panel of Fig. 15 shows the C-Love relation with various equations of state. A fit of the form [233]

C =
2X

k=0

ak

�
ln �̄2

�k
, (78)

with a
M

0
= 0.371, aM

1
= �0.0391 and a

M

2
= 0.001056 obtained in [233] is also shown in this figure with a

dashed curve. Using the wider set of equations of state considered in this review, the best-fit coe�cients
change slightly to a

YY

0
= 0.360, aYY

1
= �0.0355 and a

YY

2
= 0.000705, which is shown in the figure with a

solid curve. The bottom right panel shows the fractional di↵erence between the data and the second fit.
The maximum di↵erence for the neutron star sequence is 6.5% (which is more than 3 times larger than that
in Maselli et al. [233]), while the maximum deviation in the quark star sequence relative to the neutron star
one is 15%.

We now compare the equation-of-state variation in the I-C, Q-C and C-Love relations with that in the
I-Love-Q relations. The maximum equation-of-state variation in the I-Love relation of Fig. 3 is shown by
horizontal dotted-dashed lines in the bottom panels of Fig. 15. Observe that this variation is more than one
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TABLE III. Equal-mass BNS configurations considered in this work. From left to right the column reports: the EOS, the
gravitational mass of each star, the compactness, the quadrupolar dimensionless Love numbers, the leading-order tidal coupling
constant T

2 , the corresponding value of the quadrupolar “tidal deformability” for each object, ⇤A,B
2

, Eq. (22), the dimensionless
spin magnitude and the spin-induced quadrupole momenta CQA,QB .

name EOS MA,B [M�] CA,B kA,B
2

T
2 ⇤A,B

2
�A,B CQA,QB

BAM:0095 SLy 1.35 0.17 0.093 73.51 392 0.0 5.491

BAM:0039 H4 1.37 0.149 0.114 191.34 1020.5 0.141 7.396

BAM:0064 MS1b 1.35 0.142 0.134 289.67 1545 0.0 8.396

FIG. 12. Phasing comparison between BAM and TEOBResumS waveforms for the SLy and Ms1b equal-mass BNS configurations of
Table III. The EOB and NR waveforms, once aligned during during the early inspiral (approximately over the first 1500M of
evolution), are compatible, within the NR uncertainty (gray area in the figures) essentially up to the NR merger point, defined
as the peak of the waveform amplitude |h22|. Note however that the errors are larger for the MS1b configuration. The time
marked by the vertical green line corresponds to 700Hz.

considered as well as for spins. Interestingly, the leftmost
panel of Fig. 12 also shows that the EOB-NR phase dif-
ference towards merger is acceptably small (< 1 rad), but
also significantly larger than the NR uncertainty. This il-
lustrates that, for the first time, our NR simulations are
finally mature to inform the analytical model with some
new, genuinely strong-field, information that can be ex-
tracted from them.

The figures show that for the EOB dynamics, we typ-
ically underestimate the e↵ect of tides in the last orbit,
since the phase of the NR data is evolving faster (stronger
tides). However, the opposite is true for BAM:0095. This
result is consistent with the ones of Ref. [32] for the
same physical configuration (but di↵erent simulations,
leftmost panel of Fig. 3) where one had already the indi-
cation that for compact NS, tidal e↵ects could be slightly
overestimated with respect to the corresponding NR de-
scription. Informing TEOBResumS with the BAM simula-
tions is outside the scope of the current work. However,
we want to stress that this is finally possible with our
improved simulations.

IV. CONTRIBUTION OF SELF-SPIN TERMS
TO BNS INSPIRAL

Now that we could show the consistency between the
TEOBResumS phasing and state-of-the art NR simulations,
let us investigate in more detail the e↵ect of spins on long
BNS waveforms as predicted by our model. First of all,
let us recall that inspiralling BNS systems are not likely
to have significant spins. The fastest NS in a confirmed
BNS system has dimensionless spins ⇠ 0.04 [121]. An-
other potential BNS system has a NS with spin frequency
of 239 Hz, corresponding to dimensionless spin 0.2. The
fastest-spinning, isolated, millisecond pulsar observed so
far has � = 0.04. However, it is known that even a
spin of 0.03 can lead to systematic biases in the esti-
mated tidal parameters if not incorporated in the wave-
form model [122, 123]. Those analysis are based on PN
waveform models. A precise assessment of these biases
using TEOBResumS is beyond the scope of the present
work and will hopefully be addressed in the future. Since
the most important theoretical novelty of TEOBResumS is
the incorporation of self-spin e↵ects in resummed form,
our aim here is to estimate their e↵ect in terms of time-

TOWARDS A BETTER WAVEFORM MODEL
➤ New model: TEOBResumS 

➤ PM baseline: 

➤ EOB, resummed PN expansion of 
binary dynamics, w/ spin-orbit & spin-
spin interactions to high order 

➤ reliable up to merger  

➤ higher order modes  

➤ next-to-quasi-circular corrections 

➤ Post-adiabatic inspiral (speed-up)

�26
Code publicly available (+examples): https://bitbucket.org/eob_ihes/teobresums

[Nagar+ PRD 98, 104052 (2018)]
[Nagar&Retegno PRD 99 021501 (2019)]



TOWARDS A BETTER WAVEFORM MODEL
➤ New model: TEOBResumS 

➤ Matter sector: 

➤ GSF-resummed potential with tides 
to high order 

➤ Spin-induced effects in resummed 
form at NNLO 

➤ l=2,3,4 tidal polarizability 

➤ LO gravitomagnetic tides resummed 

➤ Universal fits for relations between 
multipole Love parameters  
[Yagi PRD 89, 043011 (2014)]
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Code publicly available (+examples): https://bitbucket.org/eob_ihes/teobresums

[Akcay+ PRD 99, 044051 (2019)]

[Bernuzzi+ PRL 114, 161103 (2015)]
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NR
GSF2(+)
GSF23(+)GSF2(-)

FIG. 9. Dephasing between BAM NR simulations and two TEOBResum variants for q ⇡ 1 in terms of increasing T
2 . We also

included the q ⇡ 1.224 BAM:0107 EOBNR comparison here. The NR waveforms and amplitudes are plotted as solid blue curves.
The TEOBResum variants plotted are: GSF2(+) (red) and GSF23(+)GSF2(�) (dashed black). In each subfigure, upper-left panels
show the waveforms starting from !̂ ⇠ 0.03 � 0.04 corresponding roughly to (M�/M) kHz. Upper-right panels show roughly
the last cycle before and after the NR merger. The lower panels display the phase disagreement ��EOBNR

22 ⌘ ��X
22 � ��NR

22

with X representing the two TEOBResum variants. The shaded (pink or gray) regions represent our estimated NR phase error.
The vertical cyan dashed lines mark the peak of NR waveform amplitude. The red, green, blue dots respectively represent
the same for the three TEOBResum variants listed above. The vertical, dashed gray lines mark the waveform alignment interval
I! = (!̂L, !̂R) introduced in Sec. IVB.

of the q > 1 situations. In order to draw more definitive conclusions, we require a larger set of NR data with ro-

[Nagar&Retegno PRD 99 021501 (2019)]


