

KICC – Epoch of Galaxy Quenching Virtual Meeting

Untangling the Properties & Effects of AGN Feedback in Galaxy Clusters

Qiu, KIAA Fellow Sept. 10th, 2020

AGN feedback in cool-core clusters

- CCCs: central $t_{cool} < 1$ Gyr
- Perseus cluster:
 - LAGN,X ~ 10⁴³⁻⁴⁴ erg/S (Fabian et al. 2015)
 - X-ray cavities filled with radio plasma: indicative of relativistic jets
 - Red excess in the form of filaments: Hα line emission associated with *T* ~ 10⁴ K gas

10 kpc

X-ray: NASA/CXC/IoA/A.Fabian et al.; Radio: NRAO/VLA/G. Taylor Optical: NASA/ESA/Hubble Heritage (STScI/AURA) & Univ. of Cambridge/IoA/A. Fabian

Simulation study

Projected Ha emissivity (optical)

Simultaneously reproduce observational properties in both optical and X-ray (Qiu et al.2019a)

AGN feedback in Phoenix cluster

- X-ray cavities, optical filaments, radio jets, similar to Perseus
- LAGN,X ~ 5.6×10⁴⁵ erg/s (McDonald et al. 2015)
- SFR ~ 500-800 M_☉/yr (McDonald et al. 2012, 2013a; Mittal et al. 2017), an extreme Cool core (McDonald 2019)
- May be at the start of an AGN outburst

Phoenix

X-ray: NASA/CXC/MIT/M.McDonald et al. Radio: NRAO/VLA Optical: NASA/STScl

100 kpc

AGN evolution over ~10 Gyr

- AGN transitions between radiatively efficient and inefficient states in cycles of 2-4 Gyr.
- Observations find AGNs in BCGs transition from radiatively efficient to inefficient over the past 5 Gyr (Hlavacek-Larrondo et al. 2013)
- *Feedback power correlates positively with filament mass and filament spatial extent (Qiu et al. 2019a,b)

[erg/s] 10^{46} 10^{45} Feedback Power 10^{44} 10^{43} 10^{42} \odot 10¹² Mass 10^{11} IH 10^{10} 10⁹

Cluster evolution radial t_{cool} / t_{ff} profile

- Commonly used to assess thermal stability of the intracluster medium (McCourt et al. 2012, Sharma et al. 2012)
- Value < 10 uncommon in **observations** (exceptions include Phoenix)
- Phoenix corresponds to the cooling-dominated stage of the simulated cluster
- AGN feedback able to regulate cool core structure for billions of years

Qiu et al. 2020

Impact of AGN feedback heat the intra-cluster medium through:

- Sound waves (Sanders & Fabian 2007)
- Weak shocks (Forman et al. 2007, Li, Ruszkowski & Bryan 2017)
- Turbulence (Zhuravleva et al. 2014)
- Internal waves (Zhang, Churazov & Schekochihin 2018)

Impact of AGN feedback radial velocity distribution of multiphase outflows

Driving the formation of filaments from warm ionized plasma to cold neutral gas filaments

Driving the formation of filaments along with rising X-ray cavities:

Qiu et al. 2020

Central (r < 20 kpc) gas kinematics velocity dispersions

Summary

- ✓ AGN transitions between radiatively efficient and inefficient states on times scales of a few Gyr;
- ✓ Filament properties correlate with feedback power, can be used to probe AGN history
- ✓ AGN drives multiphase outflows, each having a distinct impact.

