CONSTRAINING DARK MATTER MODELS WITH STRONG GRAVITATIONAL LENSING

Giulia Despali

MPA - Garching

Simona Vegetti
Simon White
Mark Lovell
Devon Powell
Elisa Ritondale

STRONG LENSING

- the shape of the image is heavily affected by the lensing
- small angular separation between the source and the lens position, i.e. almost aligned
- extended sources may be heavily distorted in gravitational arcs
- 2 multiple images of background sources, such as bright QSO

(See constrains from flux-ratio-anomalies from Hsueh et al. 2019 or Gilman et al. 2019)

STRONG LENSING & DM

properties of the small scale structures in the lens or along the line-of-sight

test CDM and
discriminate between
CDM and WDM (and SIDM)

$$\frac{n_{WDM}}{n_{CDM}} = (1 + \gamma M_{hm} M^{-1})^{\beta}$$

model	Mass function source	γ	β	$M_{hm}[M_{\odot}]$
L8-DMO	this work	0.53	-1.3	1.28×10^{8}
L11-DMO	this work	0.27	-1.3	8.25×10^{8}
L8-HYDRO	this work	0.35	-1.3	1.28×10^{8}
L11-HYDRO	this work	0.18	-1.3	8.25×10^{8}
WDM(th. rel.)	Schn+12	1	-1.16	-
WDM(th. rel.)	Lov+14	1	-1.3	-
WDM(th. rel.)	Lov+14(sub)	2.7	-0.99	-

GRAVITATIONAL IMAGING

(Vegetti et al. 2012)

- Small mass clumps are detected as corrections to an overall smooth potential, based on <u>perturbations in the surface brightness distribution</u>
- if present, more than one can be detected and we can quantify its mass
- in order to claim a detection, we require the smooth lens+clump model to fit the data better than the smooth lens alone at the 10σ level

DENSITY CORRECTION

$$\frac{n_{WDM}}{n_{CDM}} = (1 + \gamma M_{hm} M^{-1})^{\beta}$$

$$N_{LOS} = \int_0^{z_S} \int_{M_{LOW}(z)}^{M_{max}} n(m, z) dm \frac{dV}{dz} dz$$

SIMULATIONS

COMBINING MULTIPLE HST SAMPLES

11 SLACS + 17 BELLs lenses, only **1 detection**

$$\frac{n_{WDM}}{n_{CDM}} = (1 + \gamma M_{hm} M^{-1})^{\beta}$$

consistent with CDM and most WDM

with higher resolution

in the case of <u>no detections</u> or only massive detection we could challenge CDM

with larger samples

in the case of <u>more detections</u> we exclude some WDM models

- highest angular resolution imaging of extended gravitational arcs from a gravitational lens
- we can measure astrometric anomalies of the order of ~ <u>1mas</u>
- price to pay: huge data and more complex analysis (400 million visibilities)

SUMMARY

