

Search for AGN in the reionisation era

Nicolas Laporte – 18th September 2019 KICC 10th Anniversary

R. Ellis (UCL) – K. Nakajima (ESO) – H. Katz (U. Oxford) - G. Roberts-Borsani (UCL) – A. Zitrin (Ben Gurion University) – D. Stark (Arizona) – R. Mainali (Arizona) – R. Pelló (LAM)

WHAT WE KNOW

- **1.** From Planck : at z≈7.5, 50% of HI is ionised
- From LBG surveys : observable LBGs account for ≈50% of the required ionising flux
 - → other sources ? Less luminous LBGs ? AGN ?

KEY QUESTIONS

- 1. When did the first galaxies form in the early Universe ?
- 2. Is there a significant contribution to reionisation from AGN ?

Robertson et al. (2015) See also Bouwens et al. (2016)

The other candidates ?

Based on the few GRBs detections at z>6, it seems that their contribution is not negligible.

> Need more detections (eg. SVOM)

The faint LBGs may have a nonnegligible contribution. But they are well below the limit of current telescopes

Bouwens et al. (2017)

A major contribution from massive galaxies ?

Naidu et al. (2019)

A recent high-resolution N-body, dark-matter simulation (Tacchella et al. 2018) aiming to match the rapid end to the reionisation (*see Richard's talk*) suggests that $\approx 80\%$ of the reionisation budget comes from M_{UV}<-18 and M_{*}>10⁸M_o (Naidu et al. 2019)

This population of sources only represents 5% of the total population of galaxies.

Massive galaxies hosting AGN activity at z>7 may be rare

• The most massive galaxies are expected to be the most luminous objects at a given redshift.

- They are also the best candidates to host AGN activity
- But as it is observed or expected by simulations, the density of massive objects is small at very high redshift.

According to simulations, one needs to cover a very large field of view to detect massive galaxies at z>6, which are the best candidates to host AGN.

Mason et al. (2015)

Searching for AGN in wide deep field surveys

- CANDELS is one of the largest field in NIR, with deep data at optical wavelength.
- The recent WIRCam Ultra Deep Survey (Pelló et al. 2018) is another interesting field to search for massive galaxies at z>6

An brief introduction to the WUDS survey

- 50hrs WIRCAM/CFHT in Y-,J-,H- and Ks bands
- Optical data from the CFHT-LS
- 5σ depths : 26.5 AB (Y) ; 26.1 (J) ; 25.5 (H, Ks)
- Effective surface : 400 arcmin²

 \bullet

• Reduced data available at : <u>http://wuds.irap.omp.eu/</u>

Expected number of $M_{UV} < -20:9$ at z>7.5

Pelló , NL et al. (2018)

Overview of the selected z> 7 sample

Laporte et al. (sub.)

H-band : 24.3 – 25.6 AB

Roberts-Borsani et al. (2016)

H-band : 25.0–25.3 AB

These are the brightest galaxies in the WUDS and CANDELS surveys, they are therefore excellent candidates for hosting AGN

NIR spectroscopic follow-up to confirm the *AGN nature* of these massive galaxies

The species requiring ionisation energies greater than 50eV are the most promising indicators of the presence of an AGN.

- The hardness of the "AGN" radiation field permits Nitrogen to be quadruply ionised (NV)
- This line is difficult to reconcile with starforming galaxy radiation field.

A survey of massive z>7 galaxies for AGN activity

- 50hrs program with XSHOOTER/VLT (097.A-0043, PI: R. Ellis)
- 3 targets : the brightest targets selected in CANDELS (COSMOS field)
- 5hrs on MOSFIRE/Keck
- 1 target selected in CANDELS (EGS field)

Strong case for an AGN at z≈7.15

- 11h20 on source
- 3 emission lines : Ly-a (8 σ), NV(5 σ) and HeII (4 σ)
- Hell line confirmed by MOSFIRE/Keck observations
- ΔLy-a≈290 km/s

- No detection on Chandra data (X-ray)
- Redshift consistent with [CII] detection (Pentericci et al. 2016)

Laporte et al. (2017)

Photoionization modeling

We used photoionization models (Nakajima et al. 2017) to determine the nature of this z=7.15 object.

The fluxes ratios we measured using NV, HeII and CIII emission lines are irreconcilable with a normal star forming radiation field.

In the two other COSMOS targeted objects we found no evidence for AGN activity.

Laporte et al. (2017)

Tentative evidence for AGN activity at z=8.68?

- 5 hrs on source with MOSFIRE Keck
- 2 emission lines : Ly-a (8σ) and NV(5σ)
- ΔLy-a≈360 km/s

- The absence of other emission lines (HeII, CIV, CIII) makes the situation less conclusive
- Other data are needed to determine the nature of this object.

Confirming the AGN nature with ALMA

Hydrodynamics simulations show that the presence of an AGN at very high redshift changes the distribution of OIII]88µm.

In an AGN at very high redshift, the distribution of OIII]88 μ m is narrower compared to what is observed without AGN.

The CII]158 μ m distribution is not affected by the presence or not of a central black hole.

Katz et al. (in prep)

Sub-mm observation of the z=8.68 AGN candidate : absence of dust and [NII]205 μ m

Summary and Conclusions

- The observable LBGs account for 50% of the photons budget required to the reionisation
- Among other reionising sources, AGN are expected to play a non-negligible role.
- To study AGN contribution, one can search for the most massive objects in large deep blank fields

We used two deep surveys to search for AGN : CANDELS and WUDS

- We selected 11 objects at z>7
- NIR Spectroscopic follow-up of 4 of them suggests that 2 may host AGN
- The absence of dust and the nondetection of [NII]205µm in one of them may challenge this hypothesis.
- More AGN candidates are clearly needed to improve the constraints on their contribution to reionisation.