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Thus, at the Planck time t = 1, the universe consisted of 
1090 causally disconnected parts of size ct =O(1). These 
parts did not know about each other. If someone wanted to 
create the universe at the Planck time, he/she could only 
make a Very Small Bang in his/her own tiny part of the 
universe of a Planck size ct = O(1).   Everything else was 
beyond causal control.

According to the standard hot Big Bang universe, the total 
number of particles during its expansion did not change 
much, so the universe at the Planck time was supposed to 
contain about 1090 particles. At the Planck time t =O(1), 
there was one particle per Planck length ct =O(1).



Inflation can start at the Planck density if there is a single Planck 
size domain with a potential energy V of the same order as kinetic 
and gradient density. This is the minimal requirement, compared 
to standard Big Bang, where initial homogeneity is requires across 
1090 Planck size domains.
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Start with the simplest chaotic inflation model

Modify its kinetic term
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Potential in the original 
variables with kinetic term

Potential in canonical variables 
flattens because of the 
stretching near the boundary

All of these models predict
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2. TOY MODELS OF ↵-ATTRACTORS

The bosonic T-model corresponding to Fig. 1 in a form
familiar to cosmologists is
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see for example [9], eq. (1.1). Here �(x) is the scalar field, the
inflaton, ↵ can take any positive value, and �2 < 6↵, so that
the sign of the inflaton kinetic term is positive. The kinetic
term of the inflaton is not canonical and has a geometric
origin associated with a moduli space geometry. At ↵ ! 1
this is the simple chaotic inflation model with a quadratic
potential for a canonical field. At present the �2 model of
inflation is disfavored by the data, which implies that the
moduli space is not flat.

For any finite ↵ one can solve equation @�

1��2
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= @', which

yields � =
p

6↵ tanh 'p
6↵

. The boundary of the moduli

space � = ±
p

6↵ becomes ±1 in terms of the canoni-
cally normalized field ', and the quadratic potential be-
comes V = 3↵m2 tanh2 'p

6↵
. We called such ↵-attractors

T-models: their potentials depend on tanh2 'p
6↵

, they are

symmetric with respect to the change ' ! �' and look like
letter T [3]. All potentials V (�2) belong to the general class
of T-models, which includes the GL model [7], which was
the first implementation of chaotic inflation in supergravity,
with ↵ = 1/9 and V (�) ⇠ �2(1 � 3

8�2).

FIG. 4. Blue, brown and green lines show the potentials of the T-

models with V ⇠ tanh
2 'p

6↵
for ↵ = 1, 2, 3 correspondingly. The red

line in the center shows the potential of the GL model [7].

The bosonic E-model corresponding to Fig. 2 is
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The potential of E-models has an explicit exponential de-
pendence on the canonically normalized field ', asymmetric

with respect to the change ' ! �': V ⇠ (1� e�
p

2
3↵')2.

In the special case ↵ = 1 this potential coincides with the po-
tential in the Starobinsky model [11], which represents this
model as a member of the general class of ↵-attractors.

All of these models have the same kinetic term but dif-
ferent potentials. They have two common features. First of
all, they have two attractor points, shown by the red and
blue stars in Figs. 2 and 3, describing the limiting behavior
for ↵ ! 1 and ↵ ! 0. More importantly, for su�ciently
small ↵ (i.e. in the limit when the size of the moduli space
becomes small) their cosmological predictions are very sta-
ble with respect to even very significant modifications of the
potentials.

This property was explained in [3–5], and it was formu-
lated in a particularly general way in [8]: The kinetic term
in this class of models, as well as in many other models of
cosmological attractors, has a pole near the boundary of the
moduli space. If inflation occurs in a vicinity of such a pole
(which happens for su�ciently small ↵), and the potential
near the pole can be well represented by its value and its
first derivative near the pole, all other details of the poten-
tial far away from the pole (from the boundary of the moduli
space) become unimportant for making cosmological predic-
tions. In particular, the spectral index depends solely on
the order of the pole, while the tensor-to-scalar ratio also
involves the residue [8]. All the rest is practically irrelevant,
as long as the field after inflation falls into a stable minimum
of the potential with a tiny value of the vacuum energy and
stays there.

From the point of view of a phenomenology of inflation,
everything becomes nearly trivial: Take a simple model with
a pole in the kinetic term and a potential which has a mini-
mum, and we are done, independently of many other details
of the theory, in perfect agreement with observations. But
can we do it in some models which are believed to be related
to fundamental interactions? And if the properties of the
kinetic term are so important, is it possible that this class of
models may have some interesting interpretation in terms of
geometry of the moduli space? The rest of the paper will be
dedicated to the discussion of these issues, under the guid-
ance of Poincaré and Escher, as well as of many our friends
in the supergravity/string theory community.

3. THE HYPERBOLIC PLANE H
2

The hyperbolic plane H
2 has a long history in mathemat-

ics and physics, see for example [13]. A set of user-friendly
references with pictures and applications in physics include
http://mathworld.wolfram.com/PoincareHyperbolicDisk.html
https://www.youtube.com/watch?v=JkhuMvFQWz4

The Poincaré disk model of a hyperbolic geometry is pre-
sented by the Escher’s picture Circle Limit IV, see Fig. 3.
The boundary circle (which is not part of the hyperbolic
plane) is called the absolute. One can place an infinite
amount of angels and devils, of the size which looks decreas-
ing, towards the boundary in this circle, as Escher did. How-
ever, in fact, the correct understanding of hyperbolic geom-
etry means that the angels and devils close to the boundary
are of the same ‘physical’ size as the ones near the centrum
of the circle. How do we explain this? As always in a curved
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Potential in canonical variables has a plateau at large values of the inflaton field, 
and it is quadratic with respect to s. 
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Chaotic inflation with a parabolic potential goes first, starting at 
nearly Planckian density. When the field s rolls down, the plateau 
inflation begins.

No problem with initial conditions



There is a simpler and more general way to 
solve the problem of initial conditions for 
inflation, without using additional fields.
Please ask me about it after the talk.

East, Kleban, AL, Senatore 1511.05143
Kleban, Senatore 1602.53520
Clough, Lim, DiNunno, Fischler, Flauger, Paban 1608.04408
AL 1710.04278



Recent work with Renata Kallosh and Yusuke Yamada, 
1811.01023, 1906.02156, 1906.04729, 1909.04687

The main goal is to use Planck results and 
identify possible CMB targets for future 

observational missions  



Planck Collaboration: Constraints on Inflation

Fig. 7. Marginalized joint two-dimensional 68 % and 95 % CL regions for combinations of (✏1 , ✏2 , ✏3) (upper panels) and (✏V , ⌘V , ⇠2V )
(lower panels) for Planck TT,TE,EE+lowE+lensing (red contours), compared with Planck TT,TE,EE+lowE+lensing+BK14 (blue
contours).
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Table 5. Bayesian comparison for a selection of slow-roll inflationary models with wint fixed (see text for more details). We quote
0.3 as the error on the Bayes factor. Models are strongly disfavoured when ln B < �5.
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potential used in the new inflation scenario [18]
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Later on, it became customary to consider hilltop potentials of a more general type,

V = V0
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where the extra terms indicated by ... are supposed to be responsible for creating a minimum
of the potential. The simplest possibility is that such terms are higher order in �n

mn . For
n = 4, this potential well represents the behavior of the Coleman-Weinberg potential near
the top of the potential. One can show that for the small field models with m ⌧ 1, inflation
occurs at � ⌧ m, where the higher order terms are negligible, and therefore some uncertainty
in the definition of the potential at � ⇠ m does not affect inflationary predictions. That is
why the calculation of ns and r in many papers on this issue, including the Planck 2018
paper on inflation [1], is performed for the simplest models
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ignoring the terms indicated by .... However, for m . 1, the most popular hilltop models
with n = 4 shown in Fig. 1 predict ns = 0.94 for N = 50 and ns = 0.95 for N = 60. Such
models are ruled out by observational data.

These predictions change for m & 1, but they approach safer values ns & 0.96 favored
by Planck 2018 only for m & 10. In the large m limit the green lines describing predictions of
this model in Fig. 1 converge at the red circles corresponding to the predictions of inflation
in the theory with a linear potential V ⇠ �. Moreover, a similar result is correct not only
for n = 4, but for all hilltop potentials (3.3) [24]. How can the complicated theories (3.3) in
the large m limit give the same prediction as the theory with a simple potential V ⇠ �?
What is going on?

To answer this question, let us look at the the potential (3.3), which is shown by the
green line in Fig. 3. This potential has a maximum (hilltop) at � = 0, and then V (�)

decreases and becomes zero at � = m. Because the potential does not have any minimum
at � ⇠ m, the potential at � ⇡ m can be well approximated by a straight line. This
approximation becomes better and better at large m, since the increase of m stretches the
potential horizontally. For m � 10, the last 50 e-foldings in this scenario are effectively
described by a linear potential proportional to m � �. In this sense, the name “hilltop
inflation” becomes a misnomer. The last 50 e-foldings in this scenario occur when the field
moves down from � ⇡ m � 10. The slow-roll parameter ✏ in this effective theory is given
by 1

2(m��)2 , it is smaller than 1 and inflation continues until the point m � �end ⇡ 1/
p

2.
Investigation of inflation in this scenario could suggest that its predictions provide a good
match to Planck data. But this conclusion would be premature because such models suffer
from the graceful exit problem.

– 7 –

The potential is very non-linear, but the predictions, shown by the green area, 
in the large m limit converge to the predictions of a theory with a linear 

potential, for any n.      What is going on?

RK, Linde, 1906.02156
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Most of the green area in the Planck figures corresponds to m > 10. 
The linear regime corresponds to m >> 10. Last stages of inflation 
occur far away from the top, at f ~ m > 10. Unspecified higher order 
terms in f/m determine everything, initial beauty is gone.

For m < 1, the hilltop inflation is an attractor: ns = 1-3/N for all m < 1. 
Nice model, for m << 1 inflation occurs at the top, at f << m. Adding 
higher order terms one can easily modify the potential without 
affecting inflation. 

But ns = 1-3/N is too small, the models with m < 1 are ruled out by 
Planck 2015 and 2018. 
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During the last 60 e-foldings the 
potential is approximately linear, 
which explains the results of the 
calculations
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Coleman-Weinberg Squared hilltop

V = V0

✓
1� �4

m4

◆2

<latexit sha1_base64="x3T+kqJcdkxB7msm0Cg2NRAfeZw="></latexit>



T-models (yellow) and E-models (red) 
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T-models (yellow) and E-models (red) 
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By zooming at the 1s area (dark pink or dark blue), we see that 
most of it is covered by two simplest models of a-attractors
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U-duality symmetry benchmarks for a-attractors

E7(7)(R) � [SL(2,R)]7
Special cases:

a = 2, orange, also fibre
inflation, Cicoli et al

a = 1, blue, also Higgs, 
Starobinsky and conformal
attractors

a = 1/3, black,  also 
maximal superconformal
theory

Maximal supersymmetry



Benchmarks for T-models and E-models
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T-models E-models

VT = V0 tanh
2 'p
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Hard to improve: no simple well motivated 
data-consistent hill-top model reproduces 
the green area
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Attractor stripes at r . 10�3

Plateau potentials and the position of the 
attractor stripes at small r

asymptotic formula 
at small r for 
a-attractor models

Yellow stripe

(1� ns)|r!0 =
2

N

ns = 1� 2

N

Purple stripe

(1� ns)|r!0 =
2

N

8� p

9� p

asymptotic formula 
at small r for 
Dp-brane models

ns = 1� 5

3

1

N
D3-brane

Orange stripe ns = 1� 3

2

1

N D5-brane

a-attractor

ns precision data?

PICO: σ(ns) = 0.0015 

Which of the stripes
will be the favorite?

Even not detecting B-modes one 
will be able to distinguish between 
these models!
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T-models, E-models and KKLTI models on Log r scale:

A combination of the simplest a-attractors and KKLTI models 
of Dp-brane inflation with p = 3 and p = 5 covers most of the 

area favored by Planck 2018, all the way down to r = 0.



T-models, E-models and KKLTI models on Log r scale:

A combination of the simplest a-attractors and KKLTI models of D-brane 
inflation covers most of the area favored by Planck 2018, all the way 
down to r = 0.

a-attractors and KKLTI models of Dp-brane inflation with p = 3, 4, 5, 6 
form a set of b – stripes, which become vertical at small r:

3

marks associated with M-theory, string theory, maximal
N = 8 supergravity. They correspond to 7 di↵erent val-
ues of r in the range 10�3 . r . 10�2, which can be
viewed as B-mode targets for the next round of CMB
experiments.

ns
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FIG. 4. U-duality benchmarks in ↵-attractor inflationary models
originating from theories with maximal supersymmetry: M-theory,
string theory, maximal supergravity. Simplest T-model on the left,
simplest E-models on the right. The 7-disk model [43, 44] allows
7 discrete values: 3↵ = 7 shown by a red line, 3↵ = 6 (orange),
3↵ = 5 (yellow), 3↵ = 4 (green), 3↵ = 3 (blue), 3↵ = 2 (purple)
and 3↵ = 1 (black). All other values of ↵ originate from minimal
supergravity models. As we mentioned earlier, red ellipses show
the Planck 2018 results taking into account the CMB-related data.
This subset of the data was used in Planck 2018 for evaluation of
inflationary models.

Some of these targets have other reasons to be exam-
ined. At 3↵ = 6 we would probe string theory fibre infla-
tion [45, 46], at 3↵ = 3 we would probe the Starobinsky
model [35], the Higgs inflationary model [36, 37], as well
as the conformal inflation model [47]. Finally, at 3↵ = 1
we would probe the case of the maximal superconformal
symmetry, as explained in Appendix A. There is yet an-
other target, at ↵ = 1/9, r ⇠ 5⇥10�4, which corresponds
to the GL model [38, 39] shown by a purple dot in in fig-
ure 2.2 from PICO [8]. This is a supergravity inflationary
model involving just a single superfield, which provided

the first example of chaotic inflation with a plateau po-
tential.

The second class of models favored by Planck 2018 in-
cludes the hilltop inflation models with potentials V ⇠
1 � 'k

mk + ... [48, 49]. However, the simplest models

V ⇠ 1 � 'k

mk have the potential unbounded from below,
and describe the universe collapsing immediately after
inflation [9]. For m . 1, one can improve these mod-
els without modifying their inflationary predictions, but
such models predict too low ns for k = 2 and 4, so they
are already ruled out. Meanwhile in the large m limit all

models V ⇠ 1� 'k

mk , for any k, have universal predictions
for ns and r coinciding with the predictions of the sim-
ple model with a linear potential V ⇠ �, as shown by the
dark blue line at the right upper part of the green area in
Fig. 1. According to [9], this universality, which could be
an attractive feature of hilltop inflation, is directly linked
to the fundamental inconsistency of these models.

This does not mean that the full class of hilltop mod-
els is ruled out. However, consistent generalizations of

the models V ⇠ 1 � 'k

mk for m & 10 typically have very
di↵erent predictions. One such model discussed in [9] is
relatively well motivated (the Coleman-Weinberg model),
but it does not seem to match the Planck data too well.
Another model, with V ⇠

�
1 � '4

m4

�2
, provides a better

fit to the data, but it is not well motivated. Both of these
models in the large m limit predict much greater values

of r than the model V ⇠ 1 � '4

m4 . Neither of them makes
predictions reproducing the green area, which was sup-
posed to describe hilltop inflation in the Planck, CMB-S4
and PICO figures. We will not discuss these models here,
and refer the readers to [9] for a detailed investigation of
hilltop inflation after Planck 2018.

The third class of models favored by Planck 2018 in-

cludes Dp-brane inflation models with V ⇠ 1 � mk

'k + . . .

[16, 50, 51], where k = 7�p, see section IV. Their simplest

versions with V ⇠ 1� mk

'k , which were called BI (brane in-

flation) in [16], are inconsistent for the same reason as the
simplest hilltop models [9]. Consistent generalizations of

these models with potentials V ⇠ (1 + mk

'k )�1 = 'k

'k+mk

were proposed in [52] in the context of D3 brane infla-
tion. These models were generalized and called KKLTI
(KKLT inflation) in [16], and further developed in [51].

Predictions of ↵-attractors and four D-brane models
with p = 3, 4, 5, 6 (i.e. with k = 4, 3, 2, 1) can be
represented by five vertical attractor stripes with r ⌧ 1
and

1 � ns =
�

N
, � = 2,

5

3
,

8

5
,

4

3
,

3

2
. (2)

As one can see from Fig. 5, they cover most of the 2�

area in the (ns, r) space favored by Planck 2018. More-
over, to cover most of the 1� area favored by Planck 2018
it is su�cient to consider ↵-attractors and two D-brane
models with p = 3 and 5 [9, 51].



a-attractors and KKLTI models of D-brane inflation form a subclass of 
physically motivated (in SUGRA and string theory) models of pole 
inflation with 

5

A. ↵-attractors and pole inflation: E-models

There are many di↵erent ways to introduce ↵-
attractors. In the context of this paper, it is useful to
start with the pole interpretation of these models [53]

L = Lkin � V = �1

2

aq

⇢q
(@⇢)2 � V (⇢) . (3)

Here the pole of order q is at ⇢ = 0 and the residue at
the pole is aq. If the potential is regular near the pole,

V = V0(1 � c⇢ + . . .), c > 0 , (4)

one finds that inflation occurs in a small vicinity of the
pole. Inflationary predictions ns and r depend on q, on
aq, on the number of e-foldings N , and, in general, on
the constant c in the potential.

As an example, let us first consider the simplest and
the most important case q = 2, with a2 ⌘ 3↵

2 . In that

case one can make a change of variables ⇢ = e
�
p

3↵
2 '.

The theory (3) after the transformation represents a
canonical field ' with action

L = Lkin � V = �1

2
(@')2 � V (e�

p
3↵
2 '). (5)

We called these models E-models, because of the expo-

nential change of variables ⇢ = e
�
p

3↵
2 '. Inflation occurs

at large positive values of the canonically normalized field
', where the potential is given by

V = V0

�
1 � c e

�
p

3↵
2 ' + . . .

�
. (6)

It approaches the plateau from below. The canonical ki-
netic term � 1

2 (@')2 is invariant under the constant shift
of the inflaton, and the constant c can be absorbed into a
redefinition of the exponential term. Therefore the the-

ory at
q

3↵
2 ' � 1 is equivalent to the one with a potential

V = V0

�
1 � e

�
p

3↵
2 ' + . . .

�
. (7)

But this is not a good potential because it is unbounded
from below at ' ! �1. The simplest example of a con-
sistent inflationary potential in this context is provided
by V = V0(1 � ⇢)2. In the canonical variables it is given
by

V = V0

⇣
1 � e

�
p

3↵
2 '

⌘2
. (8)

For ↵ = 1 this potential coincides with the potential of
the Starobinsky model. The main di↵erence is that the
action of the original Starobinsky model by design rep-
resents the Einstein action with an additional term R

2,
with a very large coe�cient in front of it. But if one is al-
lowed to add the large term ⇠ R

2, one may also consider
general terms F (R), which may change the structure of

the potential. The situation is similar to what happens
in the theory of a scalar field m

2
�

2
/2 if one replaces it

by an arbitrary potential V (�): Inflation remains pos-
sible for an appropriate choice of V (�), but inflationary
predictions depend on the choice of the potential. This
is related to the so-called ⌘ problem.

Meanwhile in the context of ↵-attractors, the asymp-
totic expression for any potential V (⇢) growing but re-
maining non-singular at ⇢ ! 0 continues to be given by
equation (7). This explain stability of the predictions of
↵-attractors with respect to considerable modifications
of V (⇢), including possible quantum corrections [58].

Some part of this stability is a general property of the
theories (3), but the possibility to absorb the constant c

in (4) into a shift of the field ' is a unique property of
the models with q = 2. In this case the residue of the
pole, introduced in [53], a2 = 3↵

2 = 1
|RK | has a geomet-

ric origin. It was explained in [59, 60] that the Kähler
curvature of the underlying moduli space is RK = � 2

3↵ .

One can also absorb the constant c in the potential
into ⇢ for an arbitrary q

⇢̃ ⌘ c⇢ . (9)

In such case

L = �1

2
aq

(@⇢)2

⇢q
� V0(1 � c⇢ + . . .) (10)

= �1

2
c
q�2

aq
(@⇢̃)2

⇢̃q
� V0(1 � ⇢̃ + . . .) .

For q 6= 2 removing c from the potential results in the
rescaling of the residue of the pole

ãq = c
q�2

aq . (11)

Thus, we could have started with a potential with c = 1
and a redefined residue of the pole, as shown in eq. (11)

L = �1

2
ãq

(@⇢̃)2

⇢̃q
� V0(1 � ⇢̃ + . . .) . (12)

Note that only in q = 2 case where we have the hyperbolic
geometry, the residue of the pole a2 = 3↵

2 = 1
|RK | = ã2

has a geometric meaning, and we see that removing the
constant c from the potential does not change the residue.
In all other cases the original value aq or the rescaled
one ãq are not associated with any geometry and can be
used for the purpose of a convenient description of the
inflationary predictions of these models.

Explicit expressions for the spectral index ns, the
tensor-to-scalar ratio r, and the amplitude of perturba-
tions As in leading order in 1/N at small ↵ were derived
in [53] for q 6= 1. We use the following notation here for
the order of the pole q in eq. (3)

q =
�

� � 1
, � =

q

q � 1
, (13)

a-attractors correspond to pole inflation with q = 2 (supported by 
SUGRA) 

D-brane inflation form a subclass of physically motivated models of 
pole inflation with

All of these models describe a set of b – stripes with
where

4

FIG. 5. A combined plot of the predictions of the simplest ↵-
attractor models and Dp-brane inflation for N = 50 and 60. From
left to right, we show predictions of T-models, E-models, Dp�Dp
brane inflation with p = 3, 4, 5, 6. They are shown by yellow, red,
purple, green, orange and blue lines correspondingly. Red area
shown in the upper figure represents the Planck 2018 results taking
into account all available CMB-related data. Blue area shown in
the lower figure additionally takes into account the data related to
BAO.

Attractor �-stripes (2) shown in Fig. 5 appear not only
for ↵-attractors and D-brane models, but also in a gen-
eral pole inflation context introduced in [53], see also [54]
and sections II, V of this paper. Pole inflation describes
the cosmological attractors with the pole order q in the
kinetic term of the inflaton field, see (3). In particular,
↵-attractors are the pole inflaton models with q = 2,
whereas D-brane inflation potentials (both KKLTI and
BI) with k = 4, 3, 2, 1 belong to the class of the pole
inflation potentials with q = 5

3 ,
8
5 ,

4
3 ,

3
2 respectively.

These models describe cosmological attractors which in
the small r limit predict 1 � ns = �

N , where � = q
q�1 .

These results can be compared with the phenomeno-
logical parametrization of inflationary models based on
an assumption that in “natural” models of inflation one
may expect 1�ns = p+1

N , where p is some phenomenolog-

ical parameter [3, 55, 56]. In our paper, we use � instead
of p+1 to avoid confusion with p = 3, 4, 5, 6 in Dp-brane
inflation, where the use of the letter p in Dp is a long
accepted standard.

As we will see, pole inflation provides a conve-
nient theoretical framework for the phenomenological
parametrization used in [3, 55, 56]. In particular, we will
show that the characteristic scale of inflation introduced
in [3] is directly related to the residue aq at the pole of the
inflaton kinetic term, see section VI. On the other hand,
our results obtained in section V show that we may not
need to have a large continuous range of parameters �:
the predictions of the cosmological attractors described
by the two stripes � = 2 and � = 5/3 completely cover
the 1� region in the (ns, r) space favored by Planck 2018,
see Fig. 10.

While we are unaware of any specific targets for r in D-
brane inflation models and general pole inflation models
with q 6= 2, the search of the B-modes, in combination
with the improvement of the precision in the measure-
ments on ns, may be very important to distinguish dif-
ferent versions of these models from ↵-attractors and to
get a better understanding of the post-inflationary evo-
lution of the universe, including reheating, a↵ecting the
required value of the e-foldings N in all of these models.2

II. INFLATIONARY ↵-ATTRACTOR MODELS

We would like to explain here that in general class of
↵-attractor models the information about observables ns

and r is codified in their kinetic terms, under specific
conditions. For example, the models have to be in their
attractor regime, etc. The reason why ↵-attractors have
specific benchmarks, to be discussed later, is this fact
that the observational data are defined by kinetic terms
of the theory. Kinetic terms for scalars are often defined
by the symmetries of the theory, which may be broken by
the potential. For example, the kinetic terms of scalars
in maximal N = 8 supergravity is defined by U-duality
symmetry, E7(7).

It is convenient to explain this feature using the ‘pole
inflation’ version of ↵-attractors [53].

2 The standard assumption is thatN can be in the range from 50 to
60 (or from 47 to 57), but this range can be more broad, depend-
ing on the mechanism of reheating. For example, for quintessen-
tial ↵-attractors with gravitational reheating, the required value
of the e-foldings N can be greater than in more conventional
models by �N ⇠ 10, which increases the predicted value of ns

by about 0.006 [57]. This additional increase can be greater than
the Planck 1� error bar for ns.

3

marks associated with M-theory, string theory, maximal
N = 8 supergravity. They correspond to 7 di↵erent val-
ues of r in the range 10�3 . r . 10�2, which can be
viewed as B-mode targets for the next round of CMB
experiments.
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FIG. 4. U-duality benchmarks in ↵-attractor inflationary models
originating from theories with maximal supersymmetry: M-theory,
string theory, maximal supergravity. Simplest T-model on the left,
simplest E-models on the right. The 7-disk model [43, 44] allows
7 discrete values: 3↵ = 7 shown by a red line, 3↵ = 6 (orange),
3↵ = 5 (yellow), 3↵ = 4 (green), 3↵ = 3 (blue), 3↵ = 2 (purple)
and 3↵ = 1 (black). All other values of ↵ originate from minimal
supergravity models. As we mentioned earlier, red ellipses show
the Planck 2018 results taking into account the CMB-related data.
This subset of the data was used in Planck 2018 for evaluation of
inflationary models.

Some of these targets have other reasons to be exam-
ined. At 3↵ = 6 we would probe string theory fibre infla-
tion [45, 46], at 3↵ = 3 we would probe the Starobinsky
model [35], the Higgs inflationary model [36, 37], as well
as the conformal inflation model [47]. Finally, at 3↵ = 1
we would probe the case of the maximal superconformal
symmetry, as explained in Appendix A. There is yet an-
other target, at ↵ = 1/9, r ⇠ 5⇥10�4, which corresponds
to the GL model [38, 39] shown by a purple dot in in fig-
ure 2.2 from PICO [8]. This is a supergravity inflationary
model involving just a single superfield, which provided

the first example of chaotic inflation with a plateau po-
tential.

The second class of models favored by Planck 2018 in-
cludes the hilltop inflation models with potentials V ⇠
1 � 'k

mk + ... [48, 49]. However, the simplest models

V ⇠ 1 � 'k

mk have the potential unbounded from below,
and describe the universe collapsing immediately after
inflation [9]. For m . 1, one can improve these mod-
els without modifying their inflationary predictions, but
such models predict too low ns for k = 2 and 4, so they
are already ruled out. Meanwhile in the large m limit all

models V ⇠ 1� 'k

mk , for any k, have universal predictions
for ns and r coinciding with the predictions of the sim-
ple model with a linear potential V ⇠ �, as shown by the
dark blue line at the right upper part of the green area in
Fig. 1. According to [9], this universality, which could be
an attractive feature of hilltop inflation, is directly linked
to the fundamental inconsistency of these models.

This does not mean that the full class of hilltop mod-
els is ruled out. However, consistent generalizations of

the models V ⇠ 1 � 'k

mk for m & 10 typically have very
di↵erent predictions. One such model discussed in [9] is
relatively well motivated (the Coleman-Weinberg model),
but it does not seem to match the Planck data too well.
Another model, with V ⇠

�
1 � '4

m4

�2
, provides a better

fit to the data, but it is not well motivated. Both of these
models in the large m limit predict much greater values

of r than the model V ⇠ 1 � '4

m4 . Neither of them makes
predictions reproducing the green area, which was sup-
posed to describe hilltop inflation in the Planck, CMB-S4
and PICO figures. We will not discuss these models here,
and refer the readers to [9] for a detailed investigation of
hilltop inflation after Planck 2018.

The third class of models favored by Planck 2018 in-

cludes Dp-brane inflation models with V ⇠ 1 � mk

'k + . . .

[16, 50, 51], where k = 7�p, see section IV. Their simplest

versions with V ⇠ 1� mk

'k , which were called BI (brane in-

flation) in [16], are inconsistent for the same reason as the
simplest hilltop models [9]. Consistent generalizations of

these models with potentials V ⇠ (1 + mk

'k )�1 = 'k

'k+mk

were proposed in [52] in the context of D3 brane infla-
tion. These models were generalized and called KKLTI
(KKLT inflation) in [16], and further developed in [51].

Predictions of ↵-attractors and four D-brane models
with p = 3, 4, 5, 6 (i.e. with k = 4, 3, 2, 1) can be
represented by five vertical attractor stripes with r ⌧ 1
and

1 � ns =
�

N
, � = 2,

5

3
,

8

5
,

4

3
,

3

2
. (2)

As one can see from Fig. 5, they cover most of the 2�

area in the (ns, r) space favored by Planck 2018. More-
over, to cover most of the 1� area favored by Planck 2018
it is su�cient to consider ↵-attractors and two D-brane
models with p = 3 and 5 [9, 51].
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FIG. 5. A combined plot of the predictions of the simplest ↵-
attractor models and Dp-brane inflation for N = 50 and 60. From
left to right, we show predictions of T-models, E-models, Dp�Dp
brane inflation with p = 3, 4, 5, 6. They are shown by yellow, red,
purple, green, orange and blue lines correspondingly. Red area
shown in the upper figure represents the Planck 2018 results taking
into account all available CMB-related data. Blue area shown in
the lower figure additionally takes into account the data related to
BAO.

Attractor �-stripes (2) shown in Fig. 5 appear not only
for ↵-attractors and D-brane models, but also in a gen-
eral pole inflation context introduced in [53], see also [54]
and sections II, V of this paper. Pole inflation describes
the cosmological attractors with the pole order q in the
kinetic term of the inflaton field, see (3). In particular,
↵-attractors are the pole inflaton models with q = 2,
whereas D-brane inflation potentials (both KKLTI and
BI) with k = 4, 3, 2, 1 belong to the class of the pole
inflation potentials with q = 5

3 ,
8
5 ,

4
3 ,

3
2 respectively.

These models describe cosmological attractors which in
the small r limit predict 1 � ns = �

N , where � = q
q�1 .

These results can be compared with the phenomeno-
logical parametrization of inflationary models based on
an assumption that in “natural” models of inflation one
may expect 1�ns = p+1

N , where p is some phenomenolog-

ical parameter [3, 55, 56]. In our paper, we use � instead
of p+1 to avoid confusion with p = 3, 4, 5, 6 in Dp-brane
inflation, where the use of the letter p in Dp is a long
accepted standard.

As we will see, pole inflation provides a conve-
nient theoretical framework for the phenomenological
parametrization used in [3, 55, 56]. In particular, we will
show that the characteristic scale of inflation introduced
in [3] is directly related to the residue aq at the pole of the
inflaton kinetic term, see section VI. On the other hand,
our results obtained in section V show that we may not
need to have a large continuous range of parameters �:
the predictions of the cosmological attractors described
by the two stripes � = 2 and � = 5/3 completely cover
the 1� region in the (ns, r) space favored by Planck 2018,
see Fig. 10.

While we are unaware of any specific targets for r in D-
brane inflation models and general pole inflation models
with q 6= 2, the search of the B-modes, in combination
with the improvement of the precision in the measure-
ments on ns, may be very important to distinguish dif-
ferent versions of these models from ↵-attractors and to
get a better understanding of the post-inflationary evo-
lution of the universe, including reheating, a↵ecting the
required value of the e-foldings N in all of these models.2

II. INFLATIONARY ↵-ATTRACTOR MODELS

We would like to explain here that in general class of
↵-attractor models the information about observables ns

and r is codified in their kinetic terms, under specific
conditions. For example, the models have to be in their
attractor regime, etc. The reason why ↵-attractors have
specific benchmarks, to be discussed later, is this fact
that the observational data are defined by kinetic terms
of the theory. Kinetic terms for scalars are often defined
by the symmetries of the theory, which may be broken by
the potential. For example, the kinetic terms of scalars
in maximal N = 8 supergravity is defined by U-duality
symmetry, E7(7).

It is convenient to explain this feature using the ‘pole
inflation’ version of ↵-attractors [53].

2 The standard assumption is thatN can be in the range from 50 to
60 (or from 47 to 57), but this range can be more broad, depend-
ing on the mechanism of reheating. For example, for quintessen-
tial ↵-attractors with gravitational reheating, the required value
of the e-foldings N can be greater than in more conventional
models by �N ⇠ 10, which increases the predicted value of ns

by about 0.006 [57]. This additional increase can be greater than
the Planck 1� error bar for ns.
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Figure 1: The figure from the latest CMB-S4 Science Case paper [5]. The gray area shows predictions of
the simplest ↵-attractor model V ⇠ tanh2 '

M for 47 < N < 57. The green area is for the hilltop model with
V ⇠ 1 � ('/M)4. This model is theoretically inconsistent for M � 1, which is the only range of M where it
could match observational data [9].

• A combination of the simplest ↵-attractors and D-brane inflation models covers
most of the area in the (ns, r) space favored by Planck 2018. For ↵-attractor
models, there are discrete targets 3↵ = 1, 2, ..., 7, predicting 7 different values of
r = 12↵/N2 in the range 10�2 & r & 10�3.

• In the small r limit, ↵-attractors and D-brane inflation models describe ver-
tical �-stripes in the (ns, r) space, with ns = 1 � �/N , � = 2, 5

3 ,
8
5 ,

3
2 ,

4
3 . A

phenomenological description of these models and their generalizations can be
achieved in the context of pole inflation.

• Future precision data on ns may help to discriminate between these models
even if the precision of the measurement of r is insufficient for the discovery of
gravitational waves produced during inflation.

Of course, one may argue that it is premature to plan for the long journey when the
goal is nearby, and the B-mode detection at r & 10�2 is possible. For example, power-law
axion monodromy potentials during inflation have potentials proportional to '

p with p < 2

[10–12]. These potentials were derived in string theory, future data may validate them if
B-modes are detected relatively soon. Some of them, like V ⇠ � and V ⇠ �

2/3 are shown in
Fig. 1. The multi-field version of axion monodromy models [13] may have smaller values of
ns, which will improve the agreement with the data. If these or other models are validated
by the B-mode searches that are presently underway, such as BICEP2/Keck [2], this early
detection of the primordial gravitational waves will be a tremendous success. At present
the error bars for the B-mode detection might be too large, �(r) ⇠ 0.02 [2]. But during the
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