
1 1 

 Eric Linder 
UC Berkeley  

Energetic Cosmos Laboratory 

KICC 10th Anniversary Symposium 
16 September 2019 

Cosmic Growth, 
Gravitational Waves, 

and the CMB  



2 2 

New Connections 
In just the last couple of years, we have fully 
recognized close connections: 
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Gravitational Wave Distances 

GW propagation: not just speed cT but also friction αM.  

2

scalar-tensor models.
One generically expects that if there is such a confor-

mal coupling of gravity, the model must feature screen-
ing so that precision tests of gravity do not already rule
it out. This screening mechanism would act as to sup-
press the Solar-System value of –

M

, which is essentially
the rate of change per Hubble time of the gravitational
constant, compared to that in the wider cosmology. The
present and local value of |–

M

| can indeed be constrained
to be less than 0.01÷0.03 in the laboratory and in the So-
lar System (see for instance a recent summary of results
and a positive detection in [24]). A cosmological con-
straint from Big-Bang nucleosynthesis (BBN) is also a
stringent one, |G

BBN

/G
0

≠ 1| . 0.2 [25]. The Planck
constraint on the variation of the mass of the electron,
�m

e

/m
e

. 0.01 [26] can, in these gravity theories, be
re-interpreted as the variation of the Planck mass. As
will be shown in the following, the completely indepen-
dent test we propose here can reach similar or even better
sensitivity.

The idea of using GWs to test –
M

and –
T

was put for-
ward for the first time in [27], where it was shown that B-
modes created by primordial GWs in the polarized Cos-
mic Microwave Background (CMB) sky can in principle
constrain both quantities. The Planck’s CMB analysis
[28] produced, for some classes of functional parametriza-
tion of –

M

(t), errors around 0.05 at 95% confidence level
for the present value of –

M

. These errors, however, de-
pend on the assumption of a standard cosmological model
and, in particular, of a �CDM background. Therefore,
these are tests of structure formation for particular mod-
ified gravity models, rather than direct tests of generic
modifications of gravity.

In contrast, we shall emphasise that the method we
propose here is independent of the underlying cosmolog-
ical model and of the precise model of modified gravity.
Another advantage with respect to CMB or BBN con-
straints is that one can in principle map the evolution of
–

M

in an extended redshift range from today to z ¥ 8.

GW PROPAGATION

We consider a flat Friedmann-Robertson-Walker
(FRW) spacetime with scale factor a and conformal Hub-
ble function H. As it has been shown in [2], in such
a cosmological background the GW amplitude h in any
modified gravity theory which does not give gravitons a
mass, obeys the equation

ḧ + (2 + –
M

)Hḣ + c2

T

k2h = 0, (1)

where the dot stands for a derivative with respect to con-
formal time, c

T

is the speed of GWs, and

–
M

= H≠1

d ln M2

ú
dt

(2)

expresses the time variation of the time-dependent e�ec-
tive Planck mass Mú (see [13]). M2

ú is defined as the
normalization of the kinetic term for the metric fluctua-
tions h in the action for perturbations. For example, in
the simple case of a Brans-Dicke gravity with parameter
Ê, one finds –

M

= 1/(1 + Ê).
The GW event reported in Ref. [1] has shown that

c
T

= 1 with extreme precision, at least for the present
Universe. Here we would like to investigate the observ-
able e�ects of –

M

on the GW signal, remembering that,
fixing –

M

, –
T

, as already mentioned, amounts to com-
pletely fixing the non-minimal scalar-tensor interaction.

Let us define the field v © Múah. This quantity obeys
the equation of motion

v̈ + k2v ≠ µ2v = 0, (3)

with tachyonic mass µ of order H, and given by 4µ2 ©
(2+–

M

)2H2+2(2+–
M

)Ḣ+4–̇
M

H. So, provided that the
wavelength of the GW is subhorizon, k ∫ H, v evolves
according to the standard wave equation, v̈+k2v = 0, i.e.
subhorizon GWs in the Jordan frame evolve according to

h = h
a

ei(kx≠Êt) , h
a

aMú = const, (4)

where h
a

is the wave’s amplitude. This result implies
that h

a

is sensitive only to the ratio of the e�ective Planck
mass and scale factors at emission and observation.

In GR, the GW amplitude can be related to the lumi-
nosity distance d

L

of the source from the observer – the
potential evolution of Mú is the only modification here,
so that

h
a

=
3

Mú,em

Mú,obs

4
◊ h

s

, (5)

where h
s

is the standard amplitude expression that, for
merging binaries, can be approximated as (see e.g. equa-
tion (4.189) of [29])

h
s

= 4
d

L

3
GM

c

c2

4
5/3

3
fif

GW

c

4
2/3

, (6)

with M
c

the so-called chirp mass and f
GW

the GW fre-
quency measured by the observer.

The observable signal in the two polarizations h
+

, h◊
is finally obtained by multiplying h by sinusoidal oscilla-
tions and by the factors cos i (for the ◊ polarization) and
the (1+cos2 i)/2 (for the + polarization) that depend on
the inclination i of the binary orbit with respect to the
line of sight.

As a concrete example, in the rest of this paper we
assume for simplicity that –

M

is constant in the region
of observability (i.e. for z Æ 2 roughly). Then we have
that,

Mú ≥ a
–M

2 , (7)
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↵M =
d lnM 2

?

d ln a

h = hGRe�(1/2)
R
obs

em

d ln a↵M (a) = hGRe�(1/2)
R
obs

em

d lnM2

? (a)

= hGR

"
M 2

?,em

M 2

?,obs

#
1/2

1

Running of Planck mass, i.e. gravity strength, damps h.  

GW amplitude is proportional to 1 / distance    
(energy goes as inverse square)  

  h ~ 1/DL
GW  

So we can measure changes in gravity by 
comparing the GW distance to the photon 
luminosity distance to the same object.  
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lowing [18, 19] we see that the GW strain amplitude

h = hGRe−(1/2)
∫

obs

em
d ln aαM (a) = hGRe−(1/2)

∫
obs

em
d lnM2

⋆
(a)(24)

= hGR

[

M2
⋆,em

M2
⋆,obs

]1/2

. (25)

Since the strain is inversely proportional to the standard
siren luminosity distance, one has1

dL,GW (a) = dGR
L (a)

[

M2
⋆ (a = 1)

M2
⋆ (a)

]1/2

. (26)

This is a quite general expression for Horndeski gravity
and some other theories. Note in particular that the pho-
ton luminosity distance is simply dGR

L so a comparison of
the GW standard siren distance and the photon standard
candle distance gives a simple test of gravity. Thus one
can in principle measure the evolution of M⋆(a); the run-
ning αM would require a derivative of noisy data. For No
Slip Gravity we have the further simplification that

dL,GW (a) = dGR
L (a)

[

Gmatter(a)

Gmatter(a = 1)

]1/2

, (27)

and one could compare the modified gravity derived from
GW in the tensor sector to that from growth of structure
in the scalar sector.
Returning to growth observables, galaxy redshift sur-

veys already have a slew of measurements of the growth
rate quantity fσ8. Figure 3 compares the predictions
of No Slip Gravity, where we use the exact solution of
growth, with the cosmic expansion fixed to the best fit
Planck cosmology (i.e. flat ΛCDM with Ωm = 0.31), to
a compendium of current observations.
The fits of the two representative models of No Slip

Gravity, employing a motivated functional form for
M2

⋆ (a) and αM (a) respectively, are quite good. Recall
they have the same expansion history as the Planck cos-
mology, and so will fit distance data as well as the concor-
dance, general relativity cosmology. They provide better
fits to the growth rate data coming from redshift space
distortion measurements, however. We find that current
observations are well fit by the M2

⋆ model with µ = 0.1
or the αM model with A = 0.03, both with transition
time at = 0.5 and τ = 1.5.
We can further highlight the deviation from general rel-

ativity by employing the conjoined expansion and growth
history visualization of [26]. Figure 4 illustrates that the
modification of gravity is distinct from a change in the
background cosmological model. Recall that for the No
Slip Gravity models we adopted the Planck cosmology
of flat ΛCDM with Ωm = 0.31, but we see the modified
gravity conjoined growth-expansion history in terms of

1 During the late stages of this work, [20] appeared with an equiv-
alent expression.

FIG. 3. Current measurements of the cosmic structure
growth rate fσ8 are compared with the general relativity pre-
diction for the Planck cosmology (Ωm = 0.31; solid black
curve) and the No Slip Gravity models of M⋆ (dashed blue)
and αM (dot dashed red) functions. The data points come
from 6dFGRS (6; [21]), GAMA (G; [22]), BOSS (B; [23]),
WiggleZ (W; [24]), and VIPERS (V; [25]).

fσ8 vs H does not lie along the general relativity curves.
While one can change the background to match the mod-
ified gravity prediction over a narrow range of redshifts,
the modified gravity model has its own characteristic be-
havior.

Next we consider the leverage of next generation obser-
vations, such as from the Dark Energy Spectroscopic In-
strument (DESI [27]), with percent level measurements of
fσ8 to test gravitation theory. We carry out a Fisher in-
formation analysis following the approach of [28] in test-
ing early modified gravity. The data is taken to be future
measurements of fσ8 in 18 redshift bins over z = 0.05–
1.85 as projected by [27]. Only linear modes are used,
out to kmax = 0.1 h/Mpc. We include a Gaussian prior
on the matter density Ωm of 0.01 to represent external
data such as Planck CMB measurements.

For the gravity model we take the fit parameters as
exhibited in Fig. 3, for the two cases. In each case we fix
at = 0.5 as a reasonable transition time and τ = 1.5 as
the maximum allowed rapidity. Constraints weaken for
early or late transitions, and slow ones, due to param-
eter degeneracies so we present an optimistic scenario
for searching for modifications to gravity. We fit for the
matter density and amplitude of the deviation from gen-
eral relativity, either µ in the M2

⋆ model or A in the αM

model. Both correspond to the maximum deviation over
time of the functions from the general relativity limit.

h = hGRe�(1/2)
R
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But M* also affects growth, so GW distance tied to growth! 

Linder 1801.01503 e.g. in No Slip Gravity 
(also in nonlocal gravity) 

h = hGRe�(1/2)
R
obs

em

d ln a↵M (a) = hGRe�(1/2)
R
obs

em

d lnM2

? (a)

= hGR
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If we detect, e.g., a suppression in growth, then this 
can be checked vs GW distances different than GR. 

Galaxy surveys have deep complementarity 
with GW and CMB surveys.  

Gravitational Waves and Cosmic Growth 
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Gravity Predictions and Crosschecks 

Brando, Falciano, Linder, Velten 1904.12903 

Deviation in GW predicts deviation in growth, and v.v.  

Redshift space distortions (fσ8) prefer weak gravity. 
Note “mirage” models matching dlss match growth. 
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ISW Crosscorrelation 

Crosscorrelating CMB integrated Sachs-Wolfe (ISW) 
effect with galaxy density gives a positive value in 
agreement with observations, unlike some modified 
gravity (e.g. Galileon-3).  

Lensing (Weyl) potential ISW-galaxy xcorrelation 
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CMB B-modes and Gravity 

Effective field theory approach to modified gravity 
defines property functions αB, αK, αM, αT.     
(We know* αT=0, and αK is only important on horizon scales.) 

Even with αT=0, GW propagation affected by αM.  

5

FIG. 3. Regions of stability (levels of green) and gradient
instability (red) plotted in the αB,0 and αM,0 plane for s = 1.3
(dark green), s = 1.5 (green) and s = 1.7 (light green). Black
solid line corresponds to f(R) theories (αB = −αM ), blue
dotted line corresponds to No Slip Gravity (αB = −2αM ).

FIG. 4. The primordial B-mode spectrum calculated using
the property function parametrization of Horndeski models
within the hi_class, with time dependence a1, for five val-
ues of αM,0 = 1, 2, 3, 4, 5, and αB,0 = 1 or −3, αK,0 = 0.001.
The inset zooms in on the low multipoles, showing that only
αM matters. The tensor-to-scalar ratio r = 0.01 and all spec-
tra include the effects of gravitational lensing. The ΛCDM
primordial spectrum is given by the solid black curve.

This then becomes

αM,0

[

(2s− 3)Ωma−3 + 2s(1− Ωm)
]

≤ 0 , (5)

where we ignore radiation. We can readily define three
cases:

N1. s > 3/2: Stable for αM,0 < 0.

N2. s < 3Ωm/2: Stable for αM,0 > 0.

N3. 3Ωm/2 < s < 3/2: Unstable at some point in a =
[0, 1].

This agrees with the dotted line in Fig. 2 representing the
No Slip Gravity condition αB = −2αM (note αM,0 = 0
is just general relativity).
For f(R) gravity the stability condition in the power

law αM (a) model reads

αM,0

[

1− s+
αM,0as

2
+

3

2

Ωma−3

Ωma−3 + 1− Ωm

]

≥ 0 . (6)

This gives four cases:

F1. s > 5/2: Stable for αM,0 < 0.

F2. 0 < s < 1 + 3Ωm/2: Stable for αM,0 > 0.

F3. 1 + 3Ωm/2 < s < 5/2: Necessary but not sufficient
condition for stability is αM,0 > 2[s−(1+3Ωm/2)].

F4. s = 0: Stable for αM,0 > 0 and αM,0 < −5.

This agrees with the solid line in Fig. 2 representing the
f(R) gravity condition αB = −αM . (Note that s = 2
requires αM,0 > 1.11; the exact stability condition for
case F3. is analytic but messy, so we only show the sim-
pler necessary condition.) For s = 0 we see islands of
stability appear that are disconnected from each other.
This is an interesting property that we revisit in the
next section when considering implicitly stable numer-
ical parametrizations.
There is physical motivation for these two theories,

while there is not in general for ones with arbitrary
αB = −rαM . However, we can use such a relation to
show that:

R1. s > 3/2: Stable for αM,0 > 0 when r < 4/(2s− 1),
for αM,0 < 0 when 4/(2s− 1) < r < 2.

R2. s < 3/2: Stable for αM,0 > 0 when r < 2/(1 + s−
3Ωm/2), unstable for αM,0 < 0.

R3. r < 0: Unstable.

It is interesting to note that αB = −2αM , i.e. No Slip
Gravity, is a bounding model in the first case above.
For the two physical theories we now consider the forms

of the sound speed cs that these stable solutions repre-
sent. Figure 5 and Figure 6 show cs(a) for various stable
power law forms of No Slip Gravity, for αM,0 > 0 and

Low l bump is 
primordial GW. Clear 
impact of (only) αM. 

High l bump is lensing. 
Matter growth 
suppression by αM, αB. 

hi_class with αi=αi,0a1  

Denissenya & Linder 1808.00013 
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B
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CMB B-modes and Gravity 

No Slip Gravity (αB= -2αM).  

Brush, Linder, Zumalacárregui 1810.12337 

B-modes modified: 
GW + Lensing 

Lensing power modified: 
Analytic prediction is 
based on cosmic growth 
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Inflationary  Freedom 
Freedom in dark energy beyond LCDM. 
Freedom in gravity beyond General Relativity.  
Freedom in inflation beyond power law primordial PS. 
Data can explore all these “beyond”s.  

Brando & Linder, in draft 

Planck + MegaMapper (z=2-5) constrain early+late universe. 
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Summary 

The next several years – and abundant data – will 
bring these close connections to reality. 

Gravitational Waves CMB 

Δ(DGW/DEM) 
çè Δ growth 

Δ growth çè 
Δ CMB lensing 
+ ISW 

Δ gravity çè 
Δ CMB lensing 
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