SIMULATION OF JET FEEDBACK IN REALISTIC CLUSTER ENVIRONMENTS

Martin Bourne

Debora Sijacki, Ewald Puchwein, Rosie Talbot

CAMBRIDGE DIRAC

SIMULATING GALAXY CLUSTERS

time since Big Bang 9.5 Gyr

Fable Simulations: movie courtesy of Nick Henden

FEEDBACK IN GALAXY CLUSTERS

How does the jet heat the ICM?

Turbulence

Mixing

Cavity heating, cosmic rays, circulation...

Sound waves

(Randall+15)

BRIDGING THE GAP

AREPO (Springel 2010)

AND

SUPER-LAGRANGIAN REFINEMENT (Curtis & Sijacki 15, 16)

- Moving mesh Voronoi cells with fixed target mass
- Lagrangian/Eulerian hybrid
- Super-Lagrangian refinement method
- Primordial radiative cooling
- Sub-grid ISM and star formation model (Springel & Hernquist 03)
- Modified black hole feedback and accretion

Hydrostatic ICM

\sim T N N N N N \mathcal{O} MPA

Stirred ICM

(Bourne & Sijacki, 17, MNRAS, arXiv:1705.07900) COMPARISON WITH HITOM

Able to reproduce kinematic features consistent with Hitomi when a jet and substructure motions are included

(Hitomi Collaboration 16)

(Bourne, Sijacki & Puchwein, 19, MNRAS Accepted) COSMOLOGICAL CLUSTER SIMULATION

AT Z \square

AT Z \square

 \angle ()AT Ш М Z

() \bigcirc AT Ш Z

COMPARING TO REAL SYSTEMS

Galaxy Cluster MS 0735

Hubble and Chandra Image: NASA, ESA, CXC, STScl, and B. McNamara (University of Waterloo); Very Large Array Telescope Image: NRAO, and L. Birzan and team (Ohio University)

COMPARING TO REAL SYSTEMS

Galaxy Cluster MS 0735

Hubble and Chandra Image: NASA, ESA, CXC, STScl, and B. McNamara (University of Waterloo); Very Large Array Telescope Image: NRAO, and L. Birzan and team (Ohio University)

MOCK X-RAY MAPS

Lobe asymmetry Abel 4059, Abel 2052

(used PYXSIM, ZuHone+14)

WHERE DOESTHE ENERGY GO?

COMPLETING THE FEEDBACK LOOP

Sub-grid accretion disc model

Fiacconi+18

Work led by PhD student Rosie Talbot

Assume BZ model to link spin and jet power

SUMMARY

Done so far:

- New techniques are allowing us to push the resolutions limits within our simulations, invoking more sophisticated feedback models and bridging the gap between between SMBH and cluster environment.
- We have incorporated our jet feedback model into a full cosmological run of a galaxy cluster allowing us to study the interaction of the jet lobes with their environment, finding that energy is transferred mainly via PdV work and cluster weather aided mixing.

In progress:

- Coupling the jet feedback direction and power to a sub grid accretion disc model that tracks accretion rates, disc angular momentum and black hole spin.
- Also test jets in high redshift proto-clusters to explore differences in the action of the feedback mechanism.

