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why study nonlinear dynamics 
cosmological (scalar) fields ?

• inflation & end of inflation (reheating)
• Higgs dynamics
• dark matter (axions / fuzzy dm)
• late & early dark energy

* sometimes necessary, sometimes easiest thing to start with when we don’t know better

• linearity is not the norm
• provides many, scale-dependent predictions for observations

why scalar fields

why nonlinear?



result 1: instability in oscillating fields 

oscillating, cosmologically relevant, (almost) 
homogeneous scalar fields are unstable to spatial 
perturbations

* there are timescales associated with the instability, typically the longest is Hubble time scale

Khlopov, Malomed, Zeldovich (1985)
Johnson & Kamionkowski (2009)



why are dynamics  
of oscillating cosmological fields nonlinear?

• gravity 
- fields cluster, Hubble time scales 

• self-interactions
- fields can cluster/become inhomogeneous
- (can be) much faster than Hubble (due to self-resonance)

*for this short talk, I will ignore interactions with other fields, which can also be important
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Figure 2 | A slice of the density field of the  DM simulation on various
scales at z=0.1. This scaled sequence (each of thickness 60 pc) shows
how quantum interference patterns can be clearly seen everywhere from
the large-scale filaments, tangential fringes near the virial boundaries, to
the granular structure inside the haloes. Distinct solitonic cores with radii
⇠0.3–1.6kpc are found within collapsed haloes (which have virial masses
Mvir ⇠ 109˘1011 M�). The density shown here spans over nine orders of
magnitude, from 10�1 to 108 (normalized to the cosmic mean density). The
colour map scales logarithmically, with cyan corresponding to density .10.

giving rise to a co-moving Jeans length, �J / (1+z)1/4m�1/2
B , during

the matter-dominated epoch17. The insensitivity of �J to redshift, z ,
generates a sharp cuto�mass belowwhich structures are suppressed.
Cosmological simulations in this context turn out to be much
more challenging than standard N-body simulations, as the highest
frequency oscillations, !, given approximately by the matter wave
dispersion relation, ! /m�1

B �
�2, where � is the wavelength, occur

on the smallest scales, requiring very fine temporal resolution even
formoderate spatial resolution (Supplementary Fig. 1). In this work,
we optimize an adaptive-mesh-refinement (AMR) scheme, with
graphic processing unit acceleration, improving performance by
almost two orders of magnitude22 (see Supplementary Section 1
for details).

Figure 1 demonstrates that despite the completely di�erent
calculations employed, the pattern of filaments and voids generated
by a conventional N-body particle3CDM simulation is remarkably
indistinguishable from the wavelike 3 DM for the same linear
power spectrum (Supplementary Fig. 3). Here 3 represents the
cosmological constant. This agreement is desirable given the
success of standard 3CDM in describing the statistics of large-scale
structure. To examine the wave nature that distinguishes DM from
CDM on small scales, we re-simulate with a very high maximum
resolution of 60 pc for a 2 Mpc co-moving box, so that the densest
objects formed of &300 pc size are well resolved with ⇠103 grids. A
slice through this box is shown in Fig. 2, revealing fine interference
fringes defining long filaments, with tangential fringes near the
boundaries of virialized objects, where the de Broglie wavelengths
depend on the local velocity of matter. An unexpected feature of
our DMsimulations is the generation of prominent dense coherent
standing waves of dark matter in the centre of every gravitational
bound object, forming a flat core with a sharp boundary (Figs 2
and 3). These dark matter cores grow as material is accreted and
are surrounded by virialized haloes of material with fine-scale,
large-amplitude cellular interference, which continuously fluctuate
in density and velocity, generating quantum and turbulent pressure
support against gravity.

The central density profiles of all our collapsed cores fit well
the stable soliton solution of the Schrödinger–Poisson equation, as
shown in Fig. 3 (see also Supplementary Section 2 and Figs 2 and 4).
On the other hand, except for the lightest halo, which has just formed
and is not yet virialized, the outer profiles of other haloes possess a
steepening logarithmic slope, similar to the Navarro–Frenk–White
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Figure 3 | Radial density profiles of haloes formed in the  DMmodel.
Dashed lines with various symbols show six examples of the halo profiles
normalized to the cosmic mean density. All haloes are found to possess a
distinct inner core fitted extremely well by the soliton solution (solid lines).
A detailed soliton fit for the largest halo is inset, where the error is the root-
mean-square scatter of density in each radial bin. A Navarro–Frenk–White
(NFW) profile representing standard CDM is also shown for comparison
(black dot-dashed line, with a very large scale radius of 10kpc), which fits
well the profiles outside the cores. The yellow hatched area indicates the
⇢300 of the dSph satellites around the Milky Way3,24, which is consistent
with the majority of galaxy haloes formed in the  DM simulations.

(NFW) profile23 of standard CDM. These solitonic cores, which are
gravitationally self-bound and appear as additional mass clumps
superposed on the NFW profile, are clearly distinct from the cores
formed by WDM and collisional CDM, which truncate the NFW
cuspy inner profile at lower values and require an external halo for
confinement. The radius of the soliton scales inversely with mass,
such that the widest cores are the least massive and are hosted by the
least massive galaxies. Eighty percent of the haloes in the simulation
have an average density within 300 pc (defined as ⇢300) in the range
5.3⇥ 10�3–6.1⇥ 10�1 M�/pc3, consistent with the dSph satellites
around the Milky Way3,24, and objects like these are resilient to
close interaction with massive galaxies. By contrast, the very lowest
mass objects in our simulation have ⇢300 ⇠ 4.0⇥ 10�4 M�/pc3 and
Mvir ⇠108 M�, but exist only briefly as they are vulnerable to tidal
disruption by large galaxies in our simulations. Together with the
cuto� in the power spectrum at the Jeans scale (Supplementary
Fig. 3), this leads to a marked suppression of substructure below
a few times 108 M� relative to the prediction of standard CDM
(refs 8,9). A quantitative evaluation of the mass function of satellite
galaxies predicted by  DM with larger simulations is thus another
crucial test to be addressed.

The prominent solitonic cores uncovered in our simulations
provide an opportunity to estimate the boson mass, mB, by
comparison with observations, particularly for dSph galaxies where
dark matter dominates. The local Fornax dSph galaxy is the best
studied case, with thousands of stellar velocity measurements,
allowing a detailed comparison with our soliton mass profile.
We perform a Jeans analysis for the dominant intermediate
metallicity stellar population, which exhibits a nearly uniform
projected velocity dispersion (�k; ref. 25). We simultaneously
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(a)  DM (b) CDM

Schive et. al (2014)

Kofman, Linde, Starobinsky (1994)

1410.3808
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why are dynamics  
of oscillating cosmological fields nonlinear?

• gravity 
- fields cluster, Hubble time scales

• self-interactions
- fields can cluster/become inhomogeneous
- (can be) much faster than Hubble (due to self-resonance)
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Planck Collaboration: Cosmological parameters
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Fig. 21. Left: Constraints on the tensor-to-scalar ratio r0.002 in the ⇤CDM model, using Planck TT+lowP and Planck
TT+lowP+lensing+BAO+JLA+H0 (red and blue, respectively) assuming negligible running and the inflationary consistency rela-
tion. The result is model-dependent; for example, the grey contours show how the results change if there were additional relativistic
degrees of freedom with �Ne↵ = 0.39 (disfavoured, but not excluded, by Planck). Dotted lines show loci of approximately con-
stant e-folding number N, assuming simple V / (�/mPl)p single-field inflation. Solid lines show the approximate ns–r relation for
quadratic and linear potentials to first order in slow roll; red lines show the approximate allowed range assuming 50 < N < 60 and
a power-law potential for the duration of inflation. The solid black line (corresponding to a linear potential) separates concave and
convex potentials. Right: Equivalent constraints in the ⇤CDM model when adding B-mode polarization results corresponding to the
default configuration of the BICEP2/Keck Array+Planck (BKP) likelihood. These exclude the quadratic potential at a higher level
of significance compared to the Planck-alone constraints.

limited by cosmic variance of the dominant scalar anisotropies,
and it is also model dependent. In polarization, in addition to B-
modes, the EE and T E spectra also contain a signal from tensor
modes coming from reionization and last scattering. However,
in this release the addition of Planck polarization constraints at
` � 30 do not significantly change the results from temperature
and low-` polarization (see Table 5).

Figure 21 shows the 2015 Planck constraint in the ns–r plane,
adding r as a one-parameter extension to base ⇤CDM. Note that
for base ⇤CDM (r = 0), the value of ns is

ns = 0.9655 ± 0.0062, Planck TT+lowP. (38)

We highlight this number here since ns, a key parameter for in-
flationary cosmology, shows one of the largest shifts of any pa-
rameter in base ⇤CDM between the Planck 2013 and Planck
2015 analyses (about 0.7�). As explained in Sect. 3.1, part of
this shift was caused by the ` ⇡ 1800 systematic in the nominal-
mission 217 ⇥ 217 spectrum used in PCP13.

The red contours in Fig. 21 show the constraints from Planck
TT+lowP. These are similar to the constraints shown in Fig. 23
of PCP13, but with ns shifted to slightly higher values. The ad-
dition of BAO or the Planck lensing data to Planck TT+lowP
lowers the value of ⌦ch2, which at fixed ✓⇤ increases the small-
scale CMB power. To maintain the fit to the Planck tempera-
ture power spectrum for models with r = 0, these parameter
shifts are compensated by a change in amplitude As and the tilt
ns (by about 0.4�). The increase in ns to match the observed
power on small scales leads to a decrease in the scalar power
on large scales, allowing room for a slightly larger contribution

from tensor modes. The constraints shown by the blue contours
in Fig. 21, which add Planck lensing, BAO, and other astrophys-
ical data, are therefore tighter in the ns direction and shifted to
slightly higher values, but marginally weaker in the r-direction.
The 95 % limits on r0.002 are

r0.002 < 0.10, Planck TT+lowP, (39a)
r0.002 < 0.11, Planck TT+lowP+lensing+ext, (39b)

consistent with the results reported in PCP13. Note that we as-
sume the second-order slow-roll consistency relation for the ten-
sor spectral index. The result in Eqs. (39a) and (39b) are mildly
scale dependent, with equivalent limits on r0.05 being weaker by
about 5 %.

PCP13 noted a mismatch between the best-fit base ⇤CDM
model and the temperature power spectrum at multipoles ` <⇠ 40,
partly driven by the dip in the multipole range 20 <⇠ ` <⇠ 30. If
this mismatch is simply a statistical fluctuation of the ⇤CDM
model (and there is no compelling evidence to think otherwise),
the strong Planck limit (compared to forecasts) is the result of
chance low levels of scalar mode confusion. On the other hand if
the dip represents a failure of the ⇤CDM model, the 95 % limits
of Eqs. (39a) and (39b) may be underestimates. These issues are
considered at greater length in Planck Collaboration XX (2015)
and will not be discussed further in this paper.

As mentioned above, the Planck temperature constraints on
r are model-dependent and extensions to ⇤CDM can give sig-
nificantly di↵erent results. For example, extra relativistic de-
grees of freedom increase the small-scale damping of the CMB
anisotropies at a fixed angular scale, which can be compensated

34

Planck



why are dynamics  
of cosmological fields nonlinear?

• gravity 
- fields cluster, Hubble time scales

• self-interactions
- fields can cluster/become inhomogeneous
- (can be) much faster than Hubble (due to self-resonance)
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* potentials relevant for inflation (alpha-attractors, Andrei’s talk), and for early DE (Mark’s talk earlier)



result 2: oscillon formation (solitons)

resonant growth
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instability faster than Hubble

MA, Easther, Finkel, Flaugher & Hertzberg (2011) 

Earlier papers on oscillons eg.: Bogolubovsky & Makhanakov 1970s, Gleiser, Copeland Mueller (1990s)

1106.3335 



dynamics of oscillating fields
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expansion
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gravitational int.
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soliton formation in oscillating fields

MA, Easther, Finkel, Flaugher & Hertzberg (2011) 

0.25H�1
end

expansion

self-interactions

gravitational int.

solitons dominate the energy density of the field!

1106.3335 



self-interactions  
+ gravity*  

(Schrodinger-Poisson)

MA & Mocz (2019)
1902.07261
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result 3: “equation-of-state”

the spatially averaged equation-of-state of fields

- (n = 1) quadratic minima        w = 0 
- (n > 1) non-quadratic minima w = 1/3 (after sufficient time)

3

Figure 3. The equation of state parameter obtained from the numerical simulations is shown for di↵erent values of
n and M . The orange curve and green curves correspond to initially e�cient (M ⇡ 7.75⇥ 10�3mPl) and ine�cient
resonance (M ⇡ 2.45mPl), with M ⇠ 2.5 ⇥ 10�2mPl separating the two regimes. The horizontal axes show the
number of e-folds after the end of inflation for e�cient (orange, bottom axis) and ine�cient (green, top axis)
resonance. The dashed line is drawn at w = 1/3 and the dotted line denotes the homogeneous equation of state.

complete fragmentation. The above statements
are quite general; however, n = 1 is special. In this
case, the higher order bands become too narrow
to allow for significant particle production at late
times, thus arresting further fragmentation.

Lattice simulations — The presence of linear
instabilities eventually leads to significant non-
linear dynamics of the fields. To study these
non-linear dynamics we solve the equations of
motion ⇤� + @�V = 0 and the Friedmann equa-
tion numerically using a parallelized version of
LatticeEasy [26]. We initialize the simulations
around the end of inflation with a homogeneous
condensate + vacuum fluctuations and evolve
them for a few�10 e-folds of expansion after this
instant. We ran di↵erent simulations (depending
on parameters) with N = 1283, 2563, 5123, and/or
10243 lattices, with the initial size of the simu-
lation volumes L ⇠ (few � 0.1)H�1

inf

. We always
terminated the simulations before resolution
e↵ects became important. Conservatively, the
lattice simulation results should be trusted for
the number of e-folds shown in Fig. 3. We also
verified that our results are independent of the
initial power spectra of field fluctuations on scales
which are not resonantly excited during the linear
stage. The details of the numerical checks and the
evolution of the power spectra will be presented
elsewhere.

The Equation of State — We now turn our
attention to the equation of state parameter
defined as

w ⌘ hpi
s

h⇢i
s

=
h�̇2/2 � (r�)2/6a2 � V i

s

h�̇2/2 + (r�)2/2a2 + V i
s

. (3)

Here, p and ⇢ are the energy density and pressure
of the inflaton field respectively. The symbol h. . .i

s

stands for spatial average. The equation of state is
often rapidly oscillating compared to the expansion
time scales; a time average over many oscillations
should be assumed when we refer to w unless other-
wise stated. Note that if the spatially and tempo-
rally averaged gradient and kinetic energy densities
are equal to each other and dominate over the po-
tential energy density, we get w = 1/3.

We find the following results for the equation of
state at su�ciently late times:

w !
(

0 if n = 1 ,

1/3 if n > 1 ,
(4)

and independent of M . mPl. We explain the in-
dependence from M , the special nature of n = 1,
and the generic behavior for n > 1 below.

For e�cient initial resonance (M .
2.5 ⇥ 10�2mPl) the linear fluctuations grow
rapidly and backreact on the condensate. For
n = 1, meta-stable pseudo solitons (oscillons, see
for e.g. [27, 28]) are copiously produced within 1
e-fold of expansion. They behave as pressureless
dust, w = 0, and can lead to a long period of
matter dominated expansion. See the leftmost
panel in Fig. 3. For the n > 1 case, we still form
highly overdense field configurations that dominate
the energy density, but they are transients, lasting
for about an e-fold of expansion. Shortly after

V (�) / |�|2n

|�| ⇠ M

power law at the minimum

Lozanov & MA (2016/17)
1608.01213, 1710.06851 
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Figure 3. The equation of state parameter obtained from the numerical simulations is shown for di↵erent values of
n and M . The orange curve and green curves correspond to initially e�cient (M ⇡ 7.75⇥ 10�3mPl) and ine�cient
resonance (M ⇡ 2.45mPl), with M ⇠ 2.5 ⇥ 10�2mPl separating the two regimes. The horizontal axes show the
number of e-folds after the end of inflation for e�cient (orange, bottom axis) and ine�cient (green, top axis)
resonance. The dashed line is drawn at w = 1/3 and the dotted line denotes the homogeneous equation of state.

complete fragmentation. The above statements
are quite general; however, n = 1 is special. In this
case, the higher order bands become too narrow
to allow for significant particle production at late
times, thus arresting further fragmentation.

Lattice simulations — The presence of linear
instabilities eventually leads to significant non-
linear dynamics of the fields. To study these
non-linear dynamics we solve the equations of
motion ⇤� + @�V = 0 and the Friedmann equa-
tion numerically using a parallelized version of
LatticeEasy [26]. We initialize the simulations
around the end of inflation with a homogeneous
condensate + vacuum fluctuations and evolve
them for a few�10 e-folds of expansion after this
instant. We ran di↵erent simulations (depending
on parameters) with N = 1283, 2563, 5123, and/or
10243 lattices, with the initial size of the simu-
lation volumes L ⇠ (few � 0.1)H�1

inf
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terminated the simulations before resolution
e↵ects became important. Conservatively, the
lattice simulation results should be trusted for
the number of e-folds shown in Fig. 3. We also
verified that our results are independent of the
initial power spectra of field fluctuations on scales
which are not resonantly excited during the linear
stage. The details of the numerical checks and the
evolution of the power spectra will be presented
elsewhere.
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of the inflaton field respectively. The symbol h. . .i

s

stands for spatial average. The equation of state is
often rapidly oscillating compared to the expansion
time scales; a time average over many oscillations
should be assumed when we refer to w unless other-
wise stated. Note that if the spatially and tempo-
rally averaged gradient and kinetic energy densities
are equal to each other and dominate over the po-
tential energy density, we get w = 1/3.

We find the following results for the equation of
state at su�ciently late times:

w !
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0 if n = 1 ,

1/3 if n > 1 ,
(4)

and independent of M . mPl. We explain the in-
dependence from M , the special nature of n = 1,
and the generic behavior for n > 1 below.

For e�cient initial resonance (M .
2.5 ⇥ 10�2mPl) the linear fluctuations grow
rapidly and backreact on the condensate. For
n = 1, meta-stable pseudo solitons (oscillons, see
for e.g. [27, 28]) are copiously produced within 1
e-fold of expansion. They behave as pressureless
dust, w = 0, and can lead to a long period of
matter dominated expansion. See the leftmost
panel in Fig. 3. For the n > 1 case, we still form
highly overdense field configurations that dominate
the energy density, but they are transients, lasting
for about an e-fold of expansion. Shortly after
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implications: gravitational waves
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caveat* early universe g-waves amplitude depend on assumptions of expansion history
limits adapted from Lasky et. al (2015)



g-waves from nonlinear dynamics of early dark energy  
(Hubble tension)
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strong interactions
structure formation with 
with baryons (“late” universe)
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(a) box              (b) projection                            (c) slice
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FIG. 1. Anatomy of a cosmic filament. We show, for CDM, WDM, and FDM cosmologies: (a) the projected dark matter
distribution in the simulation domain at redshift z = 5.5; (b) projections of dark matter, gas, and stars in a filament; and (c)
slices of the dark matter through a filament. In CDM the dark matter fragments into subhalos on all scales. WDM exhibits
rich caustic structures. FDM has interference patterns at the scales of the de Broglie wavelength, which regularize caustic
singularities. These di↵erences in small-scale structure will help constrain the elusive nature of dark matter.

(WDM), which is often associated with fermionic dark
matter

:::::::
fermions

:
of particle mass of a few keV (typi-

cally treated as collisionless), Peccei-Quinn axions [28]
which are bosons of mass ⇠ 10�5–10�3 eV, and the ul-
tralight FDM of mass m ⇠ 10�22 eV, which is described
by a classical scalar field and exhibits wave phenomena
on scales of the de Broglie wavelength �

dB

of a few kpc
[18–21, 29, 30]. FDM may be axions expected in string
theory, which suggests the existence of a plenitude of
particles with masses over a broad range 10�33–10�10 eV
[29].

::::::::::::::
�
dB

⇠ few ⇥ kpc
::::::::::::::
[18–21, 29, 30].

:
WDM and FDM

both yield smoother structures than CDM on scales be-
low few kpc, due to either thermal motion (WDM) [23]
or quantum pressure (FDM)

:::
[18]. The existence of dwarf

galaxies in dark matter halos with masses of ⇠ 109 times
the mass of the sun (M�) in the local Universe, as well as
measurements of the ‘lumpiness’ of the dark matter dis-
tribution, constrain WDM and FDM theories, favoring

particle masses above m
WDM

⇠ 3 keV and m ⇠ 10�22 eV
respectively [31]

:::::::
[31, 32]. However, for FDM these con-

straints can only be used as guidelines, being based on
simulations that ignore the impact of wave e↵ects on
baryons.
The first objects in the Universe o↵er a unique way

to tighten the observational constraints. Compared to
the local Universe, in which galaxies in

:::::::
1011 M�:

dark
matter halos of 1011 M� are typical, an early CDM uni-
verse (at redshift z ⇠ 30when the Universe is

:
,
::::
i.e.,

108 years old
::::
after

:::
the

::::
Big

:::::
Bang) is populated by much

smaller nearly-spherical halos of ⇠ 105�107 M� in which
proto-galaxies are born [33]. In contrast, the

:::::
WDM

:
first

star-forming structures in WDM form later and are fila-
mentary due to the initial suppression of the dark matter
power spectrum by particle free-streaming [34, 35]. Com-
pared to WDM, wavelike FDM additionally features in-
terference patterns and soliton coreson kpc scales, as is

Mocz, Fialkov et. al (2019)

“usual” cold  
dark matter

warm  
dark matter

“fuzzy” 
dark matter

implications 



PBH formation from solitons?

� ⇥ 104

FIG. 2. Formation of oscillons after inflation and their persistence. In each row we show the histograms of the energy
density, ⇢, Newtonian potential, �, and the gravitational acceleration, g, across the simulation box at �N e-folds
after the end of inflation (in each column, later times are at the bottom). The orange contours, in the snapshots of
the simulation box in the last column, are drawn around regions of overdensity � 5. This is for the T-model with
n = 1, M =

p
6↵mPl, ↵ = 10�5. The vertical dashed line is at gR = �� = 10(M/mPl)

2 – the approximate prediction
for the Newtonian potential on the oscillon surface of radius R. Since oscillons are spherical, localized objects, g
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still expect that the maximal g in the histograms
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gravitational clustering of solitons7

IX. GRAVITATIONAL CLUSTERING

For � ⌧ 1, gravitational clustering is expected to be-
come important at late times (significantly after the soli-
tons have formed, see eq. (12)). At these late times,
this universe essentially behaves as a matter dominated
universe (a(t) / t2/3), with solitons becoming our new
non-relativistic dust particles on scales much larger than
their size. As a result, our zeroth order expectation is
that the gravitational clustering of these solitons should
proceed in a manner similar to dust in an expanding uni-
verse. Moreover, we can ignore non-gravitational forces
between the solitons at separations much larger than 2re

because we expect them to be Yukawa-like, with the force
falling away exponentially with separation.13

We construct the two point correlation function of soli-
ton locations obtained from our simulations to quantita-
tively investigate the e↵ects of gravitational clustering.
In Fig. 5, we show the two-point correlation function of
the solitons, calculated with the Landy-Szalay estimator
[52, 53]:

⇠
LS

(r) =
DD

RR
� N � 1

N
DR

RR
+ 1 , (19)

where there are N solitons (the data D), and N uniform
randomly chosen points R, and RR is the number of soli-
ton pairs in a given co-moving radial separation bin, RR
is the mean count for the random points over several re-
alization R, and DR is the cross-correlation statistic.

As seen in Fig. 5, the measured two point correlation
function is the same for the case with and without gravi-
tational interactions at early times soon after soliton for-
mation (a . 4). The distribution is close to Poissonian
on large scales: ⇠

LS

(r & 10) ⇡ 0. However, the co-moving
scale r

nl

⇠ k�1

nl

which is the typical separation of solitons
when they first form manifests itself in a negative corre-
lation function on small scales (we find very few solitons
with separations less than k�1

nl

).
If we allow for gravitational interactions, solitons begin

to cluster. This clustering can be quantified in our simu-
lations at late times as excess power in ⇠

LS

(for a & 10).
Consistent with clustering of point particles in a matter
dominated universe starting with uncorrelated positions
[54], we find

⇠
LS

(r) / 1

r2

, (20)

where r is a co-moving separation. Fitting the model
⇠
LS

/ a↵r� for our 6 simulations in the range of a = 10

self-interaction potential), which also showed that the above sta-
bility criterion correctly predicted the survival of large amplitude
oscillons in simulations. We further note that three dimensional
oscillons in Sine-Gordon potentials (for axions, but without grav-
ity) are not stable and have a relatively short lifetime, compared
to flattened potentials [49, 50]. Also see the Appendix.

13 This is also reminiscent of the force between solitons as analyzed
by [51].

[co-moving separation]

/ r�2

FIG. 5. The two point correlation function of soliton loca-
tions with and without the inclusion of gravitational interac-
tions. At early times, the correlation function with and with-
out gravity agree with each other. However, at late times
gravitational clustering ⇠

LS

(r) / r�2 is clearly visible for the
a = 16 and a = 20 cases in the above figure.

to a = 20, we find: ↵ = 1.7 ± 0.3, � = �2.1 ± 0.2. It
would be interesting to explore this clustering further in
detail, since it might reveal di↵erences from the point
particle case at late times.

X. STRONG SOLITON INTERACTIONS

Self-gravity plays the important role of bringing soli-
tons together at late times (i.e., significantly after their
formation), and allows them to interact.14 Fig. 6 shows
three di↵erent types of interactions that are achieved
from our cosmological initial conditions.

1. Solitons “repel/bounce o↵” each other when the
relative phase of the interacting solitons |✓

1

�✓
2

| ⇡
⇡ where  a(t,x) =  a(x)e�i(⌫at+✓a) with a = 1, 2.
The repulsive interactions lead to some of the
largest post interaction kicks to our solitons. We
observe some solitons zooming across our simula-
tion volume.

2. A few solitons merge to form more massive solitons
(typically when the relative phase is ⇠ 0), resulting
in a change in number density of solitons. Such in-
teractions are typically accompanied by generation
of a burst of scalar waves as the solitons settle into
new configurations.

3. A small fraction of solitons form orbiting binaries.

14 There are interactions at early times when gravity is ignored as
well, but not so at late times in our simulations.

consistent with nonlinear 
clustering of “point” masses

MA & Mocz (2019)
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reduction in uncertainty
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Figure 4. A summary for the asymptotic equation of
state without coupling to additional fields. The nu-
merical results from lattice simulations are shown as
green circles for M ⇡ 2.45mPl, and orange squares for
M ⇡ 7.75 ⇥ 10�3mPl. The dotted blue line is the ex-
pectation from a homogeneous, oscillating condensate.

the transients decay, the inflaton is completely
fragmented with almost no energy remaining in the
homogeneous condensate. The field configuration
now evolves freely in a turbulent manner (as
discussed for n = 2 in [29]). Numerically, we find
that the kinetic and gradient energies are approxi-
mately equal to each other and much greater than
the potential energy, implying w ! 1/3 (cf. Fig.
3), and that the field is virialized in the sense that
h�̇2/2i

s,t

= h(r�)2/2a2i
s,t

+ nhV i
s,t

holds. We
can then get an estimate of the deviation of w

from 1/3: w � 1/3 ! (2/3)(n � 2)⇥ the fraction
of energy density in the potential energy. For
ine�cient initial resonance M & 2.5⇥10�2mPl and
n = 1, we observe initially some small excitations
of the modes near k = 0 due to the broad band
which is eventually shut o↵ by expansion. The
condensate energy is redshifted as a�3, slower than
the gradient energy (a�4). Hence, the fluctuations
become ever smaller, and the oscillating condensate
determines the equation of state, yielding w = 0.
For n > 1, after initial particle production is shut
o↵ the condensate energy decays as a�6n/(n+1),
whereas the gradient energy stored in field fluctu-
ations decays as a�4 (i.e. like radiation) until the
first narrow resonance band becomes important
and particles are again produced. This second
phase of particle production in a narrow k band is
expected from our Floquet analysis and confirmed
by our lattice simulations. Subsequent evolution
includes a shifting of this peak towards higher

(n < 2) or lower (n > 2) co-moving momenta as
expected from the flow lines in the Floquet anal-
ysis. This is followed by the generation of a series
of secondary peaks from nonlinear scattering (for
n = 2, see [30]). Eventually the growth is shut o↵
by backreaction. All the peaks smear out, whereas
the remnant condensate continues to oscillate with
slowly decaying amplitude, continuing its particle
production. After su�ciently long times, we find
that the kinetic and gradient energies are approxi-
mately equal and much greater than the potential
energy with the field again virialized. This yields
an equation of state parameter w ⇡ 1/3. Note that
the n = 2 case would yield w = 1/3 for the homo-
geneous and inhomogeneous field. A summary of
the asymptotic equation of state is shown in Fig. 4.

e-folds to Radiation Domination — Our linear
analysis of the instabilities allows us to estimate
the number of e-folds after inflation required to
reach radiation domination, �N

rad

⌘ R arad

aend
d ln a,

by calculating the time of backreaction of the fluc-
tuations. First, note that for n = 2, �N

rad

⌧ 1
since in this case w ! 1/3 with and without
fragmentation. For all other n & 1, the universe
becomes radiation dominated within

�N
rad

⇠
8
<

:

1 M . 10�2mPl ,
n + 1

3
ln

✓


�

10M

m
Pl

◆
M & 10�2mPl .

(5)
Here, �/ ⇠ 10�2 is the fractional width of the

first k 6= 0 narrow resonance band (cf. Fig. 2).
Note that �/ becomes vanishingly small as n !
1 (and n � 2), leading to �N

rad

� 1. These
estimates are confirmed by our lattice simulations
(see Fig. 3).

We emphasize that w ! 1/3 can be achieved
without coupling to other fields for all n & 1.
When coupling to other massless fields is included,
�N

rad

is reduced further. Thus the above calcu-
lated �N

rad

should be taken as an upper bound on
�N

rad

. Using these results, we can calculate the
expected values of the tensor-to-scalar ratio r and
the spectral index n

s

for di↵erent values of M and
n, even including the uncertainty from couplings
to additional light fields (see Fig. 5, we use a pivot
scale k? = 0.002 Mpc�1). The solid black lines use
�N

rad

calculated above, whereas the width of the
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Gravitational Wave Emission from Collisions of Compact Scalar Solitons
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We numerically investigate the gravitational waves generated by the head-on collision of equal-
mass, self-gravitating, real scalar field solitons (oscillatons) as a function of their compactness C.
We start with solitons that are initially at rest with respect to each other, and show that there exist
three di↵erent possible outcomes resulting from their collisions: (1) an excited stable oscillaton for
low C, (2) a merger and formation of a black-hole for intermediate C, and (3) a pre-merger collapse
of both oscillatons into individual black-holes for large C. For (1), the excited, aspherical oscillaton
continues to emit gravitational waves. For (2), the total energy in gravitational waves emitted
increases with compactness, and possesses a maximum which is greater than that from the merger
of a pair of equivalent mass black-holes. The initial amplitudes of the quasi-normal modes in the
post-merger ring-down in this case are larger than that of collisions of corresponding mass black-
holes – potentially a key observable to distinguish black-hole mergers from their scalar mimics. For
(3), the gravitational wave output is indistinguishable from a similar mass, black-hole–black-hole
merger. Based on our results, LIGO may be sensitive to oscillaton collisions from light scalars of
mass 10�12 eV . m . 10�10 eV.

I. INTRODUCTION AND RESULTS

The spectacular recent detections of gravitational
waves from binary black-hole mergers has heralded a new
golden age in gravitational wave physics [1–3]. Gravita-
tional waves from the merger of compact objects are one
of our best resources for probing the strong-field regime
of gravity. They also provide us with a probe of the na-
ture of the compact objects themselves.

In addition to black-holes (BH) and neutron stars
(NS), the expected quality of the gravitational wave
data could allow for the search of exotic compact ob-
jects as progenitors in such collisions [4]. In particular,
coherent, self-gravitating, non-topological solitons made
of scalar fields are known to have highly compact cores
[5–7]. Their collisions may generate observable amounts
of gravitational waves and whose waveforms can deviate
from those of BH-BH or NS-NS mergers (see in particular
[8–11]).

In this paper, we study the head-on collisions of a
class of real scalar field solitons called oscillatons [12]
using GRChombo [13] in full general relativity. Unlike bo-
son stars made of complex scalar fields, oscillatons do
not have a conserved U(1) charge, but can nevertheless
be stable on cosmological time scales [14]. For example,
such objects can consist of a spatially localized conden-
sate of an axion field oscillating near the minimum of the
potential [15]. Such axion fields are ubiquitous in many
high energy physics theories, and are considered to be

⇤ thomashelfer@live.de; eugene.a.lim@gmail.com;
marcos.garcia@rice.edu; mustafa.a.amin@gmail.com
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FIG. 1. Fraction of initial rest mass energy of the two oscilla-
tons (E

tot

) radiated into gravitational waves (E
gw

) as a func-
tion of the initial compactness (C) of each oscillaton. In the
subcritical case, oscillatons collide to form a new stable but
aspherical, excited oscillaton. In the critical regime, oscilla-
tons collide to yield a black-hole after/during the collision. In
the degenerate case, individual oscillatons collapse to black-
holes before the collision. Note that in the critical regime (and
possibly in the subcritical regime also), the emitted fraction
in gravitational waves can exceed that of corresponding mass
black-holes (0.06% dashed line).

Helfer, Lim, Garcia & MA (2018)
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FIG. S4. Snapshots of the values of the Modulus (first row) and Higgs (second row) fields on a two-dimensional slice through
the simulation box at four di↵erent times. Around the time of backreaction, t ⇡ 23m�1 (second column), the Higgs field forms
domains (‘bubbles’) with � = ±p

2|�|f/q. They disappear within �t ⇠ 10m�1, due to collisions, as well as oscillations of the
remnant � condensate. The used parameters are b = 1, q = 102, M = 10�12m
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, f = m
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S2 Gravitational Waves and Lattice Simulations

1. Equations of Motion

We calculate the gravitational waves generated by the nonlinear field dynamics using

ḧTT
ij + 3HḣTT

ij � r2

a2

hTT
ij =

2

m2

pl

⇧TT
ij (S15)

where hTT
ij is the spatial, transverse, traceless part of the metric perturbations (gµ⌫ = gFRW

µ⌫ + hµ⌫), and ⇧TT
ij is the

transverse-traceless part of the energy momentum tensor of the fields which sources the gravitational waves. This is
a “passive calculation” where the (small) backreaction of the metric perturbations on the fields is ignored.

2. Characteristic Scales

Let us consider a gravitational wave generated at a = a
g

in the early universe with a co-moving wavenumber k.
By taking into account red-shifting due to expansion and conservation of entropy after thermalization, the frequency
today of this GW signal is
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where H
g

is the Hubble parameter of the universe at the time of generation of the gravitational waves, g
th

and g
0

are the e↵ective number of relativistic degrees of freedom at the epoch of thermalization (a
th

) and today (a
0

), ⌦
r,0 is

the fractional energy density in relativistic species today and w
mod

is the mean equation of state between generation
and thermalization (after which we assume a standard thermal history). We can parametrize the characteristic
wavenumber at which the gravitational waves are generated:
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electroweak symmetry breaking and early universe cos-
mology. It also motivates further studies on the potential
of gravitational wave probes for new physics beyond the
SM.

II A Simple Model A simplified potential captur-
ing the most salient features of a Higgs field, h, coupled
to a modulus, �, is

1

2
m2

��2 +
M2

f
(� � �

0

)

✓
h†h � v2

2

◆
+ �(h†h)2. (1)

The global minimum of the potential lies at � = 0, where
the potential becomes simply the Standard Model Higgs
potential. The constant v2 = M2�

0

/(�f). Placing the
minimum at � = 0 is a pure convention; in particular, �
carries no charges and can be shifted by a constant. We
take the mass scale M2 to be the natural value of the
Higgs mass and f to be the natural scale of the modulus
field �. That is, we suppose that quantum corrections to
the Higgs mass would be of order M2 and that generic
values � ⇠ f produce Higgs masses of this order.

The e↵ective Higgs boson mass

m2

h; e↵

(�) = M2

� � �
0

f
(2)

is positive at � � 0 and negative at � ⌧ 0, transitioning
through zero when � = �

0

. The SM Higgs mass parame-
ter is m2

h; e↵

(0) = �M2�
0

/f . In this model, the criterion
for fine tuning is

Fine tuning , � ⌘ f

�
0

� 1. (3)

In other words, it is an accident if the Higgs mass is zero
at the same point where the � potential is minimized; the
closer these two points, the more surprising the result.

We will mostly have in mind supersymmetric theories,
where this toy simplified potential can arise with M2 ⇠
m2

soft

as explained in § S4 2. We consider the hierarchy
|m2

h; e↵

(0)| ⌧ m2

� . M2 ⌧ f2. Terms we have neglected,

such as (m2

�/f2)�4 or 1

f2

�2@µ�@µ�, could have important

e↵ects on the dynamics (such as oscillon formation [10–
14]). We assume that the field � stays far from singular
points in field space for all relevant times. For now we
have omitted all modulus self-interactions for simplicity.

III Non-linear Dynamics In a tuned universe, the
modulus-Higgs field system can undergo explosive, non-
perturbative field dynamics leading to fragmentation of
the fields on short time scales (t ⌧ H�1), and yield a
non-trivial equation of state for a number of e-folds of
expansion following the fragmentation.

For � � 1, the e↵ective Higgs mass term oscillates
between very large positive and negative values due to
the oscillation of �. One expects such oscillations to

FIG. 2. The ratio of the spatially averaged energy density
in the Higgs and modulus fields as a function of time ob-
tained from our lattice simulations. This dynamics of energy
transfer between the modulus and Higgs fields is represen-
tative of the case where the modulus fragments, i.e. when
b ⌘ M4/2�f2m2

� ! 1. For the above plot we have chosen
b = 1, M2/m2

� = 102 and M/f = 10�12. The interaction
term is not included in the above energy densities.

lead to non-adiabatic, out-of-equilibrium production of
the Higgs particles. By considering tachyonic resonance
[15], and for f ⇠ �

in

⇠ m
pl

, the e�ciency of such particle
production is controlled by q ⌘ M2/m2

�. In particular,
q � 1 (as we assume) should lead to a broad range of
physical momenta for the produced Higgs particles (see
Fig. S3 in § S1).

E�cient transfer of energy from the modulus to the
Higgs field is countered by the Higgs self-interaction �.
Large self-interactions block Higgs production, whereas
at small � the Higgs field will be su�ciently populated
in non-zero momentum modes to backreact on the mod-
ulus, yielding a spatially inhomogeneous modulus (frag-
mentation). A more detailed view of the dynamics of the
modulus-Higgs system can be seen in Fig. S2 in § S1.

A Does the modulus fragment? The Higgs field
must be significantly populated in order to backreact on
the modulus and cause its fragmentation. Large q fa-
vors tachyonic resonance whereas large � limits the Higgs
field occupation numbers. We define the fragmentation
e�ciency parameter

b ⌘ M4

2�f2m2

�

, (4)

which incorporates both e↵ects to determine whether the
modulus field fragments. Note that b  1 from the
constraint that the combined modulus-Higgs potential is
positive definite. From detailed numerical simulations
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