

Major progress in our understanding of galaxy formation thanks to the recent generation "MOS" facilities and surveys

Also... many more new questions have been opened...

Evolution of BRT at high-z

Storm, Curti Masters, Kumari Shapley, Sanders, Feltre, Hirschmann, ...

0.0

-1.5

-1.0

log([NII] λ6584/Hα)

-0.5

Why?

- N/O Ionization parameter Harder spectra (low-Z+binaries) Pressure/density Shocks AGNs DIG
 - ... very likely not a single origin: different effects play different roles in different galaxies

Additional warning: be also aware of aperture effects

Evolution of the ISM properties, Mass-Metallicity relation and of the FMR: a Tower of Babel?

Different dignostics Different calibrations Different assumptions Different approaches Different samples Neglect/account environment

Different results

Mannucci, Sanders Vilchez, Calabro', Sanchez-Almeida Shapley, Siana, Puglisi

Evolution of the ISM properties, Mass-Metallicity relation and of the FMR: a Tower of Babel?

Different dignostics Different calibrations Different assumptions Different approaches Different samples Neglect/account environment

[0]]/[0]]

Evolution of the ISM properties, Mass-Metallicity relation and of the FMR: a Tower of Babel?

Different dignostics Different calibrations Different assumptions Different approaches Different samples Neglect/account environment

> Attempt to homogenize low-z and high-z Mannucci

Yet, see Siana's dwarf high metallicity targets... as well as Puglisi's

Metals abundance ratios (esp. secondary elements) -> much more stable tracers of galaxy evolutionary stage

Metallicity gradients at high-z

Major progress, but still f ar from achieving the statistics and clear-cut results obtained locally

 Resolved Jones 0.3 🛛 Mara, Res kpc⁻¹] Swinbank+12 Queyrel+12 Curti 0.2 ∧ Jones+13 Troncoso+1 Mannucci 🖉 Stott+14 $W_{bna} + 17$ 0.1 **Ferrara** Metallicity Gradient 0.0 -0.1-0.2High-z Curti -0.39 10 8 11 $\log(M_{star} [M_{\odot}])$

Yet, main issue is that high-z galaxies are simply "messy" in terms of metallicity structure ... do not get fixated in trying to extract radial, azimuthally averaged gradients...

Modelling nebular lines and stellar spectra

- Impressive progress!
- Key new insights!
 - Next step: Check consistency with other direct diagnostics? (e.g. Te for metallicities, X-ray for AGNs, ...)

Limits of current models...

Stark

Interesting new physics?

Dust extinction Dust attenuation curves Stellar/nebular relative attenuation

Reddy Siana Ferrara

- Different from local
- New recipes for stellar/nebular dust correction
- New insights on the relative distribution of dust and stars
- New insights on the dust properties and stellar population

 10^{2}

 $\mathsf{IRX} \equiv L_{\mathrm{IR}}/L_{\mathrm{UV}}$

 10^{0}

Next step -> exploit Paschen and Brackett lines

Momcheva

Where do stars form? Where star formation is suppressed

- Look at stacks on, above and below the star-forming sequence
- Elevated (suppressed) at all radii above (below) the SF sequence
 - e.g., no evidence for central starbursts

Nelson et al., 2015

Kinematics

Gas Kinematics (star forming galaxies):

- Higher velocity dispersion at high-z
- Lower V_{\rm rot}/\sigma at high-z

150 200 250 300 350

Velocity Dispersion [km/s]

100 150 200 250 300 350

Velocity Dispersion [km/s]

Übler (Progenitor bias fully under control?) **Kassin Turner** Tiley Tran **Stellar Kinematics:** CALIFA: $z \sim 0$ LEGA-C: $z \sim 0.8$ **Patricio** 1.4 1.4 **Straatman** 1.2 1.2 -> probing (also) van der Wel 1.0 1.0 $^{*}(\stackrel{0.8}{\Lambda^{2}} 0.8 (\stackrel{0.8}{\Lambda^{2}} 0.6)$ $(V_5/\sigma_0)^{\circ}$ passive galaxies 0.8 0.6 0.4 0.4 0.2 0.2 0.0 0.0

100

Constraining dark matter content
-> need to reach larger radii
(JWST, ELT, SKA2)

 Angular resolution (JWST, ELT)

Courtesy S. Kassin

 Non-uniniform gas distribution (van der Wel)

HST V-band

Williams+14

Constraining dark matter content
-> need to reach larger radii
(JWST, ELT, SKA2)

- Angular resolution (JWST, ELT)

Courtesy S. Kassin

- Non-uniniform gas distribution (van der Wel)

H α (SINFONI)

Williams+14

Constraining dark matter content
-> need to reach larger radii
(JWST, ELT, SKA2)

-

Courtesy S. Kassin

- Non-uniniform gas distribution (van der Wel)

V_{gas} (SINFONI)

Williams+14

Constraining dark matter content
-> need to reach larger radii
(JWST, ELT, SKA2)

Angular resolution (JWST, ELT)

-

Courtesy S. Kassin

HST H-band

Williams+14

- Non-uniniform gas distribution (van der Wel)

Clumps (in-situ/ex-situ) and role of merging

Clumps: evidence for both

- in-situ formation (instabilities) and long survival times
- accreted clumps (minor merger)

UDF6462: z = 1.5 High-z galaxy: f_{gua} ~ 50%

-0.5

0.0

0.5

Merger scenario vs "smooth" accretion... really alternative scenarios? (accreting flows are clumpy and form stars along the stream)

Probing cold flow accretion with 3D wide field spectroscopy

Peroux

Great prospects for "tomography" (Hammer)

Cosmological constraints using high-z HIIG

Terlevich

Constraints on IMF

"Any change in the slope of the IMF between $z \sim 0$ and $z \sim 2.5$ has to be less than ~0.06 at 1- σ level."

Next generation facilities: a sudden big leap in discovery space

ELT/TMT: Will couple Sensitivity with angular resolution (Kassin)

DESI, 4MOST, WAVE, PFS, MOONS, Euclid, WFIRST: "SDSS-like" surveys at high-z

