Spectral classification of S0 galaxies in the nearby universe: a tale of two sub-populations

J. L. Tous 1,2 , J. M. Solanes 1,2 and J. D. Perea 3

^{1,2} Departament de Física Quàntica i Astrofísica, Universitat de Barcelona - Institut de Ciències del Cosmos (ICCUB), C. Martí i Franquès 1, 08028 Barcelona, Spain

³ Departamento de Astronomía Extragaláctica, Instituto de Astrofísica de Andalucía, IAA-CSIC, Glorieta de la Astronomía s/n,18008 Granada, Spain

Epoch of Galaxy Quenching

9 September 2020

A bit of context

Formation in clusters \rightarrow hydrodinamics

Formation in the field \rightarrow gravity

Dressler 1980 Postman et al. 1984 Giovanelli et al. 1986 Goto et al. 2003 Cappellari et al. 2011 Houghton 2015

Barnes 1999 Querejeta et al. 2015 Eliche-Moral et al. 2018

NGC 2207 & IC 2163, NASA/ESA and The Hubble Heritage Team (STScI)

- Previous works.
 - → Photometry (Solanes et al. 1989; Burstein et al. 2005; Barway et al. 2007; Williams et al. 2010; Davis et al. 2016...).
 - \rightarrow Spectroscopy (Helmboldt et al. 2008; Xiao et al. 2016...).
- More recently...
 - → IFS (Fraser-McKelvie et al. 2018; Domínguez Sánchez et al. 2020; Deeley et al. 2020...).
- Our approach.
 - \rightarrow Spectroscopy + photometry + a large sample of S0.

• Sample selection.

A magnitude-limited sample of 68,043 SDSS optical spectra of S0 galaxies with $z \le 0.1$ + large set of spectrophotometric properties from public catalogs. Morphologies are inferred from the automated T-type classification of Legacy SDSS galaxies provided by Domínguez Sánchez et al. (2018).

• Principal Component Analysis.

Method

• Dimensionality reduction.

By projecting the S0 spectra on the first 2 principal components 2 main spectral modes are revealed:

- \rightarrow Passive Sequence (**PS**).
- \rightarrow Active Cloud (AC).

- Classification.
 - 1) Logistic regression.

2) Maximization of the IcV (Otsu 1979).

PS → 69% of the local S0; AC: → 25% of the local S0.

The rest of lenticulars are located in an intermediate Transition Region (TR).

Epoch of Galaxy Quenching

- Correspondence of the modal division with SF properties of S0.
 - \rightarrow galaxies in the AC show active spectra with strong emission lines;
 - \rightarrow expected differences in, at least, those physical properties related with the SF.
- Linear correlations between the PC and some properties of the S0.

For the comparison of the physical properties we use a volume-limited subset of 32,188 S0.

The S0 belonging to the AC mode differ from their PS counterparts in that the former:

i. are slightly less massive (c.f. Fraser-McKelvie et al. 2018; Domínguez Sánchez et al. 2020), although more luminous \rightarrow lower M_{star}/L; ii. have a younger, bluer stellar population, which is poorer in metals;

iii. are actively star-forming systems with SFRs ~ $2M_{\odot}yr^{-1} \rightarrow more$ than one order of magnitude higher than the PS rate.

• The ISM of each subpopulation is also different.

Exhaustive tests indicate that our spectral classification is internal-extinction-proof.

Also indicate that the potential effects of the fixed fiber aperture have a negligible impact on the classification.

• The local environment.

→ Linear decline of the fraction of AC lenticulars with the log of the local galaxy density. $\left(25^{5} - 2\right)^{-1}$

→ The strength of the emission lines of AC galaxies and its SFR is also reduced with increasing density. • Projection of the optical spectra of the other Hubble types on the PC1-PC2 subspace defined by the S0.

- → The concordance between the AC objects and late-type disk galaxies is not restricted to their similar levels of star formation, but extends to the whole optical spectrum.
- \rightarrow PS lenticulars essentially occupy the same region in the PC1-PC2 subspace than E galaxies.

- Carried out the most extensive *unbiased* statistical study of the global spectral and photometric properties of the S0 population in the Local Universe.
- Uncovered two main subpopulations of S0 galaxies: ~ 70% of the local lenticulars conform to the traditional view of S0 as passive systems; ~ 25% show spectra with strong emission lines typical of disk galaxies with active star formation. Active S0 have average SFR comparable or higher than the MW's:

→ confirmation of previous findings (e.g. Barway et al. 2013; Gavazzi et al. 2018) that not all S0 are 'red and dead'. Both the fraction and the activity of AC S0 have been found to be significant.

Summary

- There is no clean one-to-one relationship between morphology and spectral class for S0 galaxies:
 - \rightarrow this suggests a difference between dynamic and star-formation time-scales for (S0) galaxies.
- Quantified the relative abundances of passive and active S0 in terms of the local density. Linear decline in both the fraction of star-forming S0 (and the strength of their star-formation activity) with the log of the density that extends across more than four decades. Passive S0 populate all kind of environments.
- Further progress: Our analysis is being extended using MaNGA data.

https://arxiv.org/abs/2005.09016