

THE PHYSICAL PROPERTIES OF AGN OUTFLOWS AND THEIR IMPACT ON HOST GALAXIES FROM LOW TO HIGH REDSHIFT

ALESSANDRO MARCONI DEPARTMENT OF PHYSICS & ASTRONOMY, UNIVERSITY OF FLORENCE INAF - ARCETRI ASTROPHYSICAL OBSERVATORY

G. VENTURI, S. CARNIANI, G. CRESCI, F. MANNUCCI, A. MARASCO, M. MINGOZZI, R. MAIOLINO, G. TOZZI, C. FERUGLIO, M. BISCHETTI, B. BALMAVERDE, V. MAINIERI, M. BRUSA, F. FIORE, ET AL.

1) M_{BH} - L_{bul} , M_{BH} - σ_{bul} , M_{BH} - M_{bul} scaling relations

3) SFR similar to BH accretion history

WHY AGN FEEDBACK?

4) Galaxy luminosity function

Cosmic Baryon Fraction ($\Omega_{\rm b}/\Omega_0 = 0.15$ from WMAP)

Stellar feedback cannot explain missing massive galaxies (e.g. Murray+05, Di Matteo+05, Hopkins+06,18, Croton+06, Menci+08, Sijacki+15, Schaye+15 ...)

EVIDENCES FOR AGN FEEDBACK?

Do we have convincing observational evidence for AGN outflows effectively quenching star formation?

- AGN activity.
- study of high redshift / high L outflows

* Outflows at cosmic noon (z~2): AGN outflows during the peak of SF and

* Outflows nowadays (low z): outflow in nearby AGN as laboratories for the

IONISED OUTFLOWS IN Z~2 QUASARS anti-correlation of fast outflows and SF in host galaxies

Carniani+15,17

arcsec

Cresci et al. 2015, Brusa et al. 2018

IONISED OUTFLOWS IN Z~2 QUASARS anti-correlation of fast outflows and SF in host galaxies

arcsec

Cresci et al. 2015, Brusa et al. 2018

IONISED OUTFLOWS IN Z~2 QUASARS anti-correlation of fast outflows and SF in host galaxies

Cresci et al. 2015, Brusa et al. 2018

- Ionized outflows -> [OIII] 5007 (H)
- Star formation -> H (K)

http://www.super-survey.org

Molecular gas content in AGN host and outflow impact \rightarrow Circosta et al. submitted

CONNECTING LARGE SCALE WITH NUCLEAR OUTFLOWS AT Z~1.5

MAGNUM: MEASURING ACTIVE GALACTIC NUCLEI UNDER MUSE MICROSCOPE

- * Targeting Nearby AGNs (D < 50 Mpc) with VLT/MUSE
- * Seeing limited (~1"): 15 pc (@4Mpc) 115 pc (@30Mpc)
- * So far 9 objects observed (900,000 spectra!!), more to come
- * Multi-wavelength data available: Chandra, XMM-Newton, Galex, HST, Spitzer, Herschel, ALMA, Radio...

NGC 1365: DOUBLE-CONICAL OUTFLOW

Outflow spatially traced by motions deviating from rotation

[OIII] velocity

Venturi et al. 2018

NGC 1365: DOUBLE-CONICAL OUTFLOW

Outflow spatially traced by motions deviating from rotation

 $\Delta RA [arcsecs]$

[OIII] velocity

Venturi et al. 2018

NGC 1365: DOUBLE-CONICAL OUTFLOW

Outflow spatially traced by motions deviating from rotation

 $\Delta RA [arcsecs]$

[OIII] velocity

Venturi et al. 2018

Green: [OIII] Red: Ha Blue: stars

IC 5063 FOV ~ 14 kpc

NGC 5643 FOV ~ 5 kpc

Radio jet contours

Broad linewidths (outflows/turbulence) perpendicular to AGN cones and radio jet!

OUTFLOWS VS JETS

NGC 1386 FOV ~ 5 kpc

Venturi et al. 20, in prep.

Green: [OIII] Red: Ha Blue: stars

IC 5063 FOV ~ 14 kpc

NGC 5643 FOV ~ 5 kpc

OUTFLOWS VS JETS

Venturi et al. 20, in prep.

Broad linewidths (outflows/turbulence) perpendicular to AGN cones and radio jet!

DISENTANGLING OUTFLOW AND DISK PROPERTIES

Mingozzi et al. 2019

NGC 4945

MAGNUM SURVEY: OUTFLOW STRUCTURE

Circinus

[OIII] velocity - Stellar velocity

NGC 4945

MAGNUM SURVEY: OUTFLOW STRUCTURE

Circinus

[OIII] velocity - Stellar velocity

NGC 4945

MAGNUM SURVEY: OUTFLOW STRUCTURE

Circinus

A simple kinematical model: hollow cone

MAGNUM SURVEY: OUTFLOW STRUCTURE

But velocity fields are complex: real motions or effect of clumpy line emission?

> A hollow conical outflow?

Circinus

[OIII] velocity - Stellar velocity

A simple kinematical model: hollow cone

- * Montecarlo "cloud" model, assumed velocity field
- (e.g. beam smearing, binning, etc.)
- *assumption of velocity field

* Takes into account all geometrical projection effects and observational effects

* Weigh clouds according to measured flux in spaxel where cloud is "observed" Extremely versatile: allow tomographic reconstruction of 3D structure following

- * Montecarlo "cloud" model, assumed velocity field
- (e.g. beam smearing, binning, etc.)
- *assumption of velocity field

* Takes into account all geometrical projection effects and observational effects

* Weigh clouds according to measured flux in spaxel where cloud is "observed" Extremely versatile: allow tomographic reconstruction of 3D structure following

Circinus galaxy - MUSE observations, MAGNUM survey

Marconi et al., in prep.

Wrong cone orientation + aperture, outflow

Circinus galaxy - MUSE observations, MAGNUM survey

With right cone geometry and outflow velocity model reproduces observations

Marconi et al., in prep.

Circinus galaxy - MUSE observations, MAGNUM survey

Model

With right cone geometry and outflow velocity model reproduces observations

NGC4945 MUSE observations, MAGNUM survey

Line velocity-integrated Map

20

25

15

10

-5

0

-5

Model Unweighted

Observed

Model Flux Weighted

L.O.S Velocity Map

L.O.S Velocity Map

L.O.S Velocity Map

Velocity Dispersion Map

Velocity Dispersion Map

Velocity Dispersion Map

NEXT GENERATION OF KINEMATICAL MODELS Models feature constant velocity field, complexity is given by clumpiness!

NEXT GENERATION OF KINEMATICAL MODELS Models feature constant velocity field, complexity is given by clumpiness!

NEXT GENERATION OF KINEMATICAL MODELS Models feature constant velocity field, complexity is given by clumpiness!

- * Outflows are impacting host galaxies (disturbed kinematics, filaments, cavities, positive and negative feedback)
- * But overall effects are not significant: we are missing the evidence that AGN outflows are significantly quenching SF \rightarrow may work slowly on long timescales ...
- * Complexity and spatial resolution of new IFU data require a new approach to model kinematics and to infer outflow properties

CONCLUSIONS

