The contribution of faint galaxies to Cosmic Reionization

Marco Castellano

INAF- Osservatorio Astronomico di Roma

with L. Pentericci, P. Dayal, A. Hutter, B. Yue, A. Ferrara, A. Fontana, A. Grazian, E. Merlin, R. Amorin, R. Maiolino, S. De Barros, et al.

A synthetic view of cosmic history

Timeline and sources of HI Reionization

Patchy topology favoured (Treu+12, Pentericci+14)

Smooth

Timeline and sources of HI Reionization

*Decline of Lyα visibility in star-forming galaxies key probe of late reionization (e.g. Stark+10, Fontana+10, Pentericci+11,+14, Schenker+12)

*Reionization timeline can be explained by the evolution of UV luminosity density from starforming galaxies (e.g. Bouwens+15, Robertson+15).

Patchy topology favoured (Treu+12, Pentericci+14)

Reionization: open issues (1)

$$\dot{N}_{ion}(s^{-1}Mpc^{-3}) = 10^{49.7} (\frac{\rho_{UV}}{6 \cdot 10^{25}}) (\frac{3.0}{\alpha_S}) (\frac{f_{esc}}{0.1}) (\frac{1}{10^{25}}) (\frac{1}{10^{25$$

- Luminosity function faint end
- Escape fraction
- Intrinsic spectrum

Low f_esc from bright galaxies, at $z\sim3-4$, also talk by F. Marchi

Is galaxy number density high enough? Do they emit enough ionizing radiation?

Are other sources needed? (i.e. faint AGNs, Giallongo et al. 2012-2015)

Reionization: open issues (2)

What is the topology of reionization?

What distinguishes Lya emitting and non emitting galaxies, what causes visibility patchiness?

Outline of this talk

1) Constraints on LF cut-off at z>5 from ultrafaint galaxies in the Frontier Fields.

Number of faint galaxies during reionization.

2) Physical properties of confirmed z~7 LAEs

Ionizing properties of galaxies during reionization.

Ionization-bounded nebula with holes

3) Connection between Lya emitting galaxies and clustering.

The role of galaxy clustering during reionization.

(1) The critical role of the faintest sources

The critical role of the faintest sources

The LF cut-off (feedback due to UV background) affects the number counts of highly magnified sources. We can probe the cut-off of the LF from galaxy number counts in the Frontier Fields survey.

High-z faint galaxies in the Frontier Fields

We looked for ultrafaint z>5 galaxies in the **ASTRODEEP** catalogues of A2744 and MACS0416

- 10 bands photozs
- Median from 6 different codes to minimize systematics

Merlin et al. A&A 2016 MC+ A&A, 2016b

http://astrodeep.u-strasbg.fr/ff/ http://www.astrodeep.eu

High-z faint galaxies in the Frontier Fields

Comparison between Yue et al. 2016 model and observed counts. All lensing models used to build a global likelihood minimizing systematics.

No evidence of LF cut-off due to feedback

First constraints on the cut-off circular velocity for star formation at z>5

No evidence of LF cut-off due to feedback

Consistent with Bouwens+17, looser constraints than in Livermore+17: but beware that lensing models uncertainties are the real limitation in this kind of analysis!

Faint galaxies likely have a dominant role in reionization

MC+ *ApJL*, 2016c

No evidence of cut-off at halo mass $M>2-5 \times 10^9$ Msun (z=5-10)

LF cut-off must be at M_{UV} >-15

No evidence of LF cut-off due to feedback

Consistent with Bouwens+17, looser constraints than in Livermore+17: but beware that lensing models uncertainties are the real limitation in this kind of analysis!

Faint galaxies likely have a dominant role in reionization

MC+ *ApJL*, 2016c

No evidence of cut-off at halo mass $M>2-5 \times 10^9$ Msun (z=5-10)

LF cut-off must be at M_{UV} >-15

Ultra-faint, compact high-z galaxies: GC progenitors?

Spectroscopy from MUSE (+ X-SHOOTER for z~3 dwarfs)

The luminosity, mass and size range we are probing is the one predicted for GC progenitors at z>3

Vanzella, MC et al. 2017a Vanzella et al. 2017b

4Å-8697Å	Proto-GCs	-24:03:44.7	-24:03:43.4	-24:03:25.8
Stellar mass (10 ⁶ M _O)	1, 10	$68_{[21,3273]}\mu_{tot}^{-1}$	$380_{[368,585]}\mu_{tot}^{-1}$	$16_{[12,1027]}\mu_{tot}^{-1}$
SFR ($M_{\odot}yr^{-1}$)	0.2, 2.0	$54_{[1,165]}\mu_{tot}^{-1}$	$275_{[131,585]}\mu_{tot}^{-1}$	$5_{[0.5,48]}\mu_{\rm tot}^{-1}$
Age (Myr) E(B - V)	5~0	1.3 _[1,708]	$1.4_{[1,3]}$	3.2[1, 710]
$R_{\rm e}$ (UV) (pc) $R_{\rm e}$ (UV) (pc)	16, 35(**)	20.13 16 ± 7	140 ± 13 150 ± 20	<100
$\Sigma_{\text{SMD}} (M_{\odot} \text{pc}^{-2})$	800-1720	<50 1400^{+2400}_{-900}	$ \begin{array}{r} 130 \pm 20 \\ 295^{+100}_{-80} \end{array} $	>85
$\Sigma_{\rm SFR}$ (M _O yr ⁻¹ pc ⁻²)	$(1.6 - 3.4)10^{-4}$	2.7×10^{-3}	2.3×10^{-4}	$>5.3 \times 10^{-5}$
m(1500 Å)	-29-32	31.4 ± 0.2	29.7 ± 0.2	29.6 ± 0.3
M(1500 Å)	>-17	-15.3	-17.0	-17.1
$\beta_{\rm UV}$	$\lesssim -2.5$	-2.52 ± 0.36	-2.40 ± 0.16	-2.85 ± 0.43
$\mu_{\rm tot}$	_	25.0 ± 2.5	19.0 ± 2.0	3.0 ± 0.2
$\mu_{ ext{tang}}$	-	17.5 ± 2.0	13.4 ± 1.5	1.7 ± 0.1
f(+)/f(-)	-	≃2.5	≃2.5	-

Tighter constraints adding FF#3-4

1.0

Including FF #3-4, public ASTRODEEP catalogs by Di Criscienzo et al. 2017.

No evident cut-off up to faintest magnitudes. (M_{UV} ~-14.5 2 σ ; Yue, MC et al. in prep.)

Tighter constraints adding FF#3-4

(2) Physical properties of confirmed z~7 Lyα galaxies

A closer look at z~7 sources: optical line emission

Known evidence for high-EW [OIII]+Hβ lines from IRAC colors at z>6 (e.g. Labbe et al. 2013, Wilkins et al. 2013, Smit et al. 2014, Roberts-Borsani et al. 2016)

Good redshift indicator

A closer look at z~7 sources: optical line emission

An extreme escape fraction can erase the Ly α line, what about other lines?

a) Em. lines disappear when fesc \rightarrow 1

b) Strong high ionization lines

Nakajima&Ouchi 2014: high [OIII]/[OII] see also Stasinska et al 2015

IRAC colours of our deep spectroscopic sample

Goal: analyse optical line emission comparing 11 known emitters and 25 high quality non-emitters observed by CANDELSz7 FORS2 Large Programme (P.I. Pentericci)

How: stacking of deep IRAC observations (UDS and GOODS)

Stacking of IRAC bands, main concern: confusion/blending/overlap ping of sources due to low resolution.

Close-by sources "removed" with **T-PHOT** (Merlin+2015, http://www.astrodeep.eu/t-phot/)

MC+ *ApJ*, 2017

IRAC colours of our deep spectroscopic sample

Goal: analyse optical line emission comparing 11 known emitters and 25 high quality non-emitters observed by CANDELSz7 FORS2 Large Programme (P.I. Pentericci)

How: stacking of deep IRAC observations (UDS and GOODS)

Stacking of IRAC bands, main concern: confusion/blending/overlap ping of sources due to low resolution.

Close-by sources "removed" with **T-PHOT** (Merlin+2015, http://www.astrodeep.eu/t-phot/)

MC+ *ApJ*, 2017

Evidence of strong optical line emission at z~7

Subsample	CH1–CH2	EW([O III]+H β) (Å)
Ly α -emitting, all	-1.0 ± 0.21	1500^{+530}_{-440}
Ly α -emitting, bright	-0.28 ± 0.14	290^{+170}_{-150}
Ly α -emitting, faint	< -1.5	>2900
No Ly α , all	-0.47 ± 0.11	520^{+170}_{-150}
No Ly α , bright	-0.23 ± 0.07	230_{-70}^{+70}
No Ly α , faint	-0.61 ± 0.23	720_{-330}^{+400}

Strong optical line emission: implications on f_{esc}

Strong optical line emission: conclusions

- Evidence of strong [O III]+H β emission in the stacked SEDs of both samples

- Differences possibly due to physical conditions of the H II regions (Ly α -emitting galaxies being younger, metal-poor, or with a lower fesc)

- The strong signature of optical line emission of Ly α detected objects yield to fesc < 20% (50% under extreme assumptions)

- Only with JWST we can fully constrain the presence of <u>density bounded HII</u> <u>regions (</u>e.g. Zackrisson et al. 2013, Nakajima&Ouchi 2014, De Barros+ 2015)

- Possible f_{esc} increase <u>combined</u> with IGM HI increase (Dijkstra et al. 2014) to explain Ly α drop at z>6

(3) The role of (faint) galaxy clustering

A space oddity at z=7: two close-by LAEs

In the overall paucity of Ly α lines: one line of sight with twin bright emitters among the 8 l.o.s. investigated in Pentericci+ 14.

The BDF4 field hosts two close-by (4.4 proper Mpc) EW>50AA emitters. Their L_{UV} cannot build a large enough HII region to explain line visibility (Vanzella+11).

A closer look at the BDF region with HST

HST Cycle 22 program (PI MC) to look for surrounding, fainter LBGs.

14 orbits with V606, I814, Y105.

Previous Hawk-I data limited to Y~26.5.

A closer look at the BDF region with HST

Previous Hawk-I data limited to Y~26.5.

Six robust LBGs recovered at Y105~26.5-27.5 (at S/N>10)

$$\begin{split} (S/N(I_{814}) < 1) \wedge (I_{814} - Y_{105} > 2.2) \\ Y_{105} - (J + K) < 0.8 \\ (S/N(Y_{105}) > 10) \wedge (S/N(V_{606})) < 1, \end{split}$$

HST Cycle 22 program (PI MC) to look for surrounding, fainter LBGs.

14 orbits with V606, I814, Y105.

A closer look at the BDF region with HST

Stacking of the six new LBGs: V606 and I814 undetected at >30.2 mag, I814-Y105>3, S/N~2 detection in J+K.

Z_{phot}=6.95. Consistent with the objects being at the same *z* of the emitters.

An overdensity of LBGs at z~7

Observed= 8 objects in two pointings. Expected ~1.8-2.9 objects.

No clustering around z~7 GOODS-S galaxies lacking Ly α emission.

MC+ ApJL, 2016a

An overdensity of LBGs at z~7

Observed= 8 objects in two pointings. Expected ~1.8-2.9 objects.

The BDF field is 3-4x overdense wrt average: consistent with a positive relation between line visibility and galaxy density as in *inside-out reionization scenarios*. (e.g. McQuinn+ 07, Wyithe&Loeb 07, Dayal+ 09).

MC+ ApJL, 2016a

Connection between reionization and overdensities

- Relation between density and HI fraction
 LAE pairs live in overdense regions with
 Iow HI
- BDF analogs are reionized, overdense bubbles

Connection between reionization and overdensities

Connection between reionization and overdensities

Hot topic for the near future!

Connecting galaxy overdensity, reionization scenarios and 21cm signal with SKA (Hutter+16).

Spectroscopic follow-up is ongoing...

Awarded 33 hrs FORS2@VLT, program is near completion

Summary and conclusions

1) No evident cut-off of the UV LF at M_{UV} <-15: favours faint galaxy-driven reionization.

2) Evidende of strong optical line emission in faint z~ galaxies disfavors high fesc

3) Two close-by $z\sim7$ LAEs in the BDF field are embedded in an overdensity: connection between clustered faint galaxies and first "bubbles".

We really need JWST to 1) go deeper into the LF; 2) constrain HII properties; 3) confirm relation between clustering and Lya visibility

IRAC colours of our deep spectroscopic sample

Stacking of IRAC bands, main concern: *confusion/blending/overlapping* of sources due to low resolution.

Close-by sources "removed" with **T-PHOT** (Merlin+2015, *http://www.astrodeep.eu/t-phot/*)

A closer look at z~7 sources: optical line emission

Possible explanations for the Ly α drop:

1) There is an increase in the amount of neutral hydrogen in the surrounding IGM that quenches the Ly α emission. Assuming no change in galaxy properties X_{HI}~0.5 at z~7

2) There is an increase in the Lyman Continuum escape fraction.

3) There is a sudden increase in dust extinction.

4) A significant fraction (> 60-70%) of selected galaxies is not at z~7.
Possibly V-faint low-z galaxies showing extreme line emission that can mimic the Lyman break (e.g. Hayes et al. 2012).

Sources of HI Reionizing emission

"Normal" star-forming galaxies?

Emission from second generation stars in star forming galaxies leaking into the IGM.

AGNs? Rapid decline at z > 2.5 (e.g. Cowie+ 09), but evidence that faint end slope is steeper than previously thought (Fiore et al. 2011, Giallongo et al. 2012, 2015).

Still unknown sources ?

MiniQSOs (e.g. Madau et al. 2004) PopIII emission (e.g. Vankatesan 2003, Pan 2012), Dark matter annihilation (Liu et al. 2016)

$$\dot{N}_{ion}(s^{-1}Mpc^{-3}) = 10^{49.7}(s^{-1}Mpc^{-3})$$

- Luminosity function faint end
- Escape fraction
- Intrinsic spectrum

A closer look at z~7 sources: LF cut-off and feedback

A closer look at z~7 sources: LF cut-off and feedback

Comparison between Yue et al. 2016 model and observed counts. All lensing models used to build a global likelihood minimizing systematics.

GOODS-S ASTRODEEP catalog: ultradeep IRAC data

Improved constraints from full IRAC coverage of GOODS-S

ASTRODEEP is updating the CANDELS GOODS-S catalog:

- IRAC CH1 and CH2 supermaps (GOODS+S-CANDELS and all available programs on CDFS, see e.g. Labbe+ 15)

- 18 medium band optical bands

- Deep optical coverage in U, B, R bands (VIMOS)

<u>Everything reprocessed with</u> <u>improved procedures in T-PHOT</u>

A closer look at z~7 sources: optical line emission

Known evidence for high-EW [OIII]+Hβ lines from IRAC colors at z>6 (e.g. Labbe et al. 2013, Wilkins et al. 2013, Smit et al. 2014)

Good redshift indicator: <u>we can check</u> <u>reliability of LBGs lacking Lyα</u> <u>confirmation.</u>

EW(Lya)<9A from 52hrs FORS2 spectrum