Models for the Cosmic Evolution of Star Formation in Galaxies

Romeel Davé (Edinburgh)

with: Sourav Mitra, Kristian Finlator, Robert Thompson, Mika Rafieferantsoa

Cosmic SFRD in ACDM

Halo mass range for active SF

What is the physics that picks out this mass range?

Growing galaxies via the baryon cycle

Outflows

Galaxy

Cold accretion Wind

recycling

Circumgalactic medium

IGM

define: $\eta = \text{outflow rate / SFR}$ $\zeta = \text{Fraction of inflow at R}_{\text{vir}}$ that gets into ISM $t_{\text{rec}} = \text{typical time for outflow to recycle into ISM}$

Finlator&RD08 t_{age}/Gyr

$$\frac{\dot{M}_{\rm in-grav}}{M_{\rm halo}} = 0.47 f_b \left(\frac{M_{\rm halo}}{10^{12} M_{\odot}}\right)^{0.15} \left(\frac{1+z}{3}\right)^{2.25} \,\rm{Gyr}^{-1} \,\rm{Dekel} + 09$$

Baryon cycling parameters

- *Ejective feedback* η = Outflow/SFR
- Preventive feedback $\zeta = \dot{M}_{ISM} / \dot{M}_{gas,halo}$
- Wind recycling time
 t_{rec} = time for outflow to return.

Each depends on M_{halo}, z: 8 free parameters (after model selection).

The Best-Fit Equilibrium Model ($\chi^2 \sim 1.6$)

Constraints on feedback

- Ejective feedback stronger at low mass, high redshift(?).

Scatter from inflow stochasticity

- Solution If we assume scatter in halo inflow translates to scatter in SFR, then we get $\sigma \sim 0.2$ -0.25 dex, approx indep of M_{*} and z.
- Simulations also predict σ~0.25 dex (RD+11, Sparre+15, ...), though larger at low-M* where feedback creates burstiness.

MS scatter via the sSFRF

Specific SFR function in bins of stellar mass shows more detail than just σ : e.g. rapidity of quenching, starburst fraction, ...

Lines: MUFASA Points: Ilbert+15

Extreme star-formers at high-z

 Most SMGs consistent with top end of main sequence; not in a burst phase. Still often interacting in dense environment.

Scatter is correlated!

- ✤ Inflow event -> decrease in Z with increase in f_{gas} -> increase in SFR.
- Correlated scatter reflects competition bet. consumption time M_{gas}/sSFR(1+η) and accretion time M_{gas}/(dM_{in}/dt).
- Probes response of galaxy to stimulus new regime to test models.

Quantifying "second-order" galaxy growth

- Deviation plots: Δ [SFR,Z,f_{HI},f_{H2}] from their typical value at a given M_{*}, plotted against each other.
- Set test of galaxy response to inflow fluctuations; less sensitive to calibration issues.

Self-Regulated Star Formation

Infall

from

IGM

Stellar and metal growth limited by cooling rate and conversion of gas into stars

ejective and preventive feedback

- Gas & metal content reflects <u>"evolutionary state</u> gas supply vs. processing rate
- Mergers drive galaxy evolution are subdominant to cold streams for fueling
- Galaxies & IGM evolve independently are connected by baryon cycling through CGM

Concluding remarks: Emission line galaxies as probes of the baryon cycle

- Cosmic star formation driven by stochastic halo growth, suppressed by preventive feedback at high & low masses, and modulated by outflows in between. What physics sets this?
- Emission lines provide an optimal way to probe such processes:
 - Balmer lines probe star formation, outflows
 - Metal lines probe metallicity, AGN content
 - CO, CII probe molecular fuel
 - HI-21cm probes gas in outskirts & CGM
 - \bullet Ly α probes low-mass early galaxies
 - ... all of these can now be directly simulated

Scatter around mean scaling relations is non-Gaussian and correlated, which offers new ways to test models and gain insights into how galaxies are impacted by baryon cycling.

MS & scatter in simulations

- Main sequence predictions among simulations are similar.
- Solution \mathfrak{S} Cosmological sims predict $\sigma \sim 0.25$ dex.
- ✤ Still too low at z~2

