Seeding planetesimals in circumstellar discs

Evgeni Grishin (Technion)

Hagai B. Perets, Yael Avni - Technion, Israel Institute of Technology, Haifa, Israel Dimitri Veras - University of Warwick, Coventry, UK

Proplanetary discs - Grishin, Perets & Avni (2019), MNRAS, 487, 3324 WD discs - Grishin & Veras (2019), MNRAS, 489, 168

Rocky Worlds Meeting, Cambridge, UK, 07.01.2020

Planets form from a protoplanetary disc of gas and dust

<ロト < 四ト < 回ト < 回ト < 回ト = 三回

Planets should form fast

Different scales are affected by different physical processes

Different scales are affected by different physical processes

Formation of planetesimals is the hardest phase

Several models have been suggested to form planetesimals

Last stages of planet formation are inefficient

- Many ejections in our own Solar System:
 - Nice model, Grant Tack and late heavy bombardment (Gomes+2005, Walsh+2011 Nature)
 - At least $\gtrsim M_{\oplus}$ is ejected (Dones+1999; Melosh 2003)

• Mass Function: $dN_{\rm eject}/dm \propto m^{-p}$

 p = 5/3 (SI, Simon+2016) or p = 11/6 (collisional, Dohnanyi 1969, Raymond+2018)

Expected number density $n = 0.2 \text{ au}^{-3}$, ~ 50 times denser than the nominal estimate (Do+ 2018)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

'Oumuamua's are efficiently captured in young systems (Grishin+2019)

• Gas drag:
$$F \propto C_D R_p^2 \rho_g v_{rel}^2$$

• Energy loss during passage $\Delta E \sim F \cdot (v_{rel} t_{cross}) \sim C_D R_p^2 \Sigma_g v_{rel}^2$

• Capture if $\Delta E \gtrsim E_k \implies R_p \lesssim C_D \frac{\Sigma_g}{\rho_p} \left(1 + \frac{v_{esc}^2}{v_{o}^2}\right)$

•
$$\Theta_{s}(v_{\infty}, r) \equiv \frac{v_{esc}^{2}}{v_{\infty}^{2}} = 2 \frac{GM_{\star}}{rv_{\infty}^{2}}$$
 - Safronov number

- $\Theta_s \ll 1$ geometric
- $\Theta \gg 1$ gravitational focusing
- At 1 AU: $v_{\rm esc} \sim 40 \text{ km/s} \Longrightarrow$ $R_p \sim 50 \text{ m}$

The capture fractions are estimated by a probabilistic model (Grishin+2019)

- Protoplanetary disk structure: MMSN (Chaing, Goldreich 1997, Grishin, Perets 2015): $\Sigma_g = 2 \cdot 10^3 \left(\frac{r}{AU}\right)^{-3/2} \text{ g} \cdot \text{cm}^{-2}$
- Distribution functions: Maxwellian velocity, dispersion σ, uniform area for impact parameter b
- $f_V(v_\infty) \propto v_\infty^2 \exp(-v_\infty^2/2\sigma^2); f_B(b) \propto b/b_{\max}^2$
- Geometric Scattering $\Theta_s \ll 1$
 - $f_c(R_p) \propto b_{\max}^{-2} R_p^{-4/3}$
 - Underestimates the capture fraction
- Gravitational focusing $\Theta_s \gg 1$
 - $f_c(R_p) \propto \sigma^{-14/5} b_{\max}^{-2} R_p^{-2/5}$

Monte Carlo simulations well fitted by grav. focusing regime (Grishin+2019)

Cluster

Field

• Focused ($\Theta_s \gg 1$) for $R_p \gtrsim 10$ m

• Geometric ($\Theta_s \ll 1$) up to $R_p \lesssim 100 \text{ m}$

(日) (四) (日) (日)

э

Young planetary systems can capture many large planetesimals (Grishin+2019)

$$N_{\text{captured}}(R_{p}) = n_{\star}N_{\text{eject}}(R_{p}) \cdot \pi b_{\text{max}}^{2} \cdot \sigma \cdot t_{\text{typ}} \cdot f_{c}(R_{p}); \ \frac{dN}{dm} \propto m^{-p}$$

	$n_{\star} [{ m pc}^{-3}]$	<i>t</i> _{typ} [Myr]	σ [km/s]
Field	0.1	3	40
Cluster	$750/\pi N_{\star}^{1/2}$	0.3	6.2

Larger planetesimals require progressevely closer approach for capture (Grishin+2019)

- $\blacksquare \sim 1 \ {\rm km}$ planetesimals captured within $a_c \lesssim 2 \ {\rm AU}$
- $\blacksquare \sim 1~m$ pebbles captured everywhere in the disc

WDs show signs of gas, debris discs around them and metal pollution

- 25-50% of WDs show signs of metal pollution (Veras 2016)
 - attributed to accreting planetesimals
- Over 40 discs around WDs are known (Farihi 2016)
 - 20% have both gas as well as dust (Gänsicke+ 2006; Dennihy+ 2018)
 - Condensation is stalled due to unknown process (Metzger+2012)
- Viscous spreading should expand the disc beyond the Roche limit (Metzger+2012, Kenyon & Bromley 2017)

Intact planetesimal inside the debris disc of SDSS J1228+1040 is a puzzle (Manser+2019)

WDs show signs of gas, debris discs around them and metal pollution (Grishin & Veras, 2019)

- Similar gas-assisted capture can work for scaled-down WD discs
 - very low rates for ISM material
 - Exo-KBO and exo-Oort cloud comets are easily captured after 1 orbit
- Effective loss-cone calculation due to Galactic tides (Heisler & Tremaine 1986) leads to loss rate of
 in 1018 g gm⁻¹ for r = D
 - $\dot{m} \sim 10^{18} \mathrm{~g~yr^{-1}}$ for $q = R_{\mathrm{Roche}} \approx R_{\odot}$
 - ~1% of the Oort cloud is lost within ~1 Gyr, similar to Alcock+1986
 - loss rate linear in closest approach q (Grishin & Veras, 2019)
- If the disc extends further than $q \gg R_{\rm Roche}$, many planeteisimals are captured rather than disrupted

Prospects for Planet formation and planets around WDs

Metre barrier potentially resolved by inserting few 'seeds'

- Small number of large planetesimals is enough for planet formation (Ormel and Kobayashi 2012)
- Newly captured planetesimals are targets for pebble accretion (Ormel, Klahr 2010; Lambrechts, Johansen 2012)
- Does not explain the first generation of planetesimals (chicken and egg), likely to be formed by a rare event (e.g. SI)
- Most probable mechanism for lithopanspermia (Adams & Spergel 2005)
- Discs around evolved stars can capture ISM and exo-Oort planetesimals
 - Can lead to second generation planet formation
 - Captures planeteismals around WDs
 - Possibly higher rate than direct break-up at R_{roche}, maybe relevant for the formation of SDSS J1228+1040b

- We found an analytical model for capture of planetesimals in Protoplanetary discs
- \blacksquare Thousands of 'Oumuamua-like objects and a few $\gtrsim 1 \text{km}$ ones are likely to be captured
- Potential doorway to overcome the metre barrier, planetesimal formation and lithopanspermia
- First generation is still a rare events, but planet formation is not in isolation
- Same capture occurs on discs around evolved stars
- Could lead to second generation planet foration and bringing rocky material to the WD debris disc before break-up

э

Aerodynamic gas drag is the main interaction with small planetsimals

Aerodynamic Gas Drag

(Weidenschilling 1977; Perets, Murray-Clay

2011)

•
$$F_d = -\frac{1}{2}C_D(Re)A\rho_g v_{rel}^2$$

- C_D Drag coefficient
 Re = 2R_pv_{rel}/c_sλ -Reynolds number
 - R_p- planetesimal size; c_s sound speed; λ- mean free path
- A Cross section
- *v_{rel}* relative velocity

Different drag regimes

- Epstein regime: $C_D \propto Re^{-1}$ $(R_p \ll \lambda)$
- Ram pressure regime: $C_D \approx 0.44$ $(R_p \gg \lambda)$

・ロト ・個ト ・ヨト ・ヨト

• Stokes regime: $C_D \propto Re^{-3/5}$

э

Compelling evidence for protoplanetary disks

- Spectral Energy Distribution
- Direct Observations (ALMA Partnership: 2015, 2016)
- Disks are abundant around young stars

The ejected planetesimals can encounter other planetary systems

Encounters during disk lifetime = $N_{ejected} n_* \cdot (\pi b_{max}^2) \langle \sigma \rangle t_{disk}$,

• $t_{disk} = 3$ Myr

Field (Nordström 2004: Adams and Spergel 2005)	Cluster (Lada and Lada 2003; Adams and Spergel 2005)
• $\langle \sigma \rangle = 30 \text{km/s}$ - dominated by star's relative velocities • $b_{max} = 50 \text{AU}$ • $n_{\star}^{f} \sim 0.1 pc^{-3}$ • $R_{\text{enc}} \sim 10^{-2} \text{ yr}^{-1}$	• $\langle \sigma \rangle = 6.2 \pm 2.7 \text{km/s} - \text{dominated by planeteismal's escape velocity}$ • $b_{max} = 120 \text{AU}$ • $n_{\star}^{c} \sim 750 / \pi N_{\star}^{1/2} \text{ pc}^{-3}$ • N_{\star} - number of stars
	$\blacksquare R_{\rm enc} \sim 1 \ {\rm yr}^{-1}$
	オロトオ部トオヨトオヨト ヨーのの(

back up: Capture comes with a variety of disk inclinations

back up: The encounter fractions are estimated by a probabilistic model

Dist. functions:

$$f_V(v) = \sqrt{\frac{2}{\pi}} \frac{v^2}{\sigma^3} \exp\left(-\frac{v^2}{2\sigma^2}\right); \ v \in [0,\infty]; \ f(b) = \frac{2b}{b_{max}^2}; \ b \in [0, b_{max}]$$

$$Joint dist. function of rand. var. \ x \equiv \left(\frac{b}{b_{max}}\right)^{\alpha} \left(\frac{v_{\infty}}{\sigma}\right)^2 \text{ is } f_X(x) = 2^{2-2/\alpha} \frac{1}{\alpha\sqrt{\pi}} x^{(2-\alpha)/\alpha} \Gamma\left(\frac{3\alpha-4}{2\alpha}, \frac{x}{2}\right)$$

Geometric Scattering $\Theta_s \ll 1 \implies \alpha = 2$

$$f_X(x) = \frac{1}{\sqrt{\pi}} \Gamma(1, x/2) = \operatorname{erfc}\left(\sqrt{x/2}\right)$$
$$P(x < x_{max}) = x_{max} = 5.5 \cdot 10^{-6} \left(\frac{\sigma}{6.2 \, km/s}\right)^{-2} \left(\frac{b_{max}}{234 \, \mathrm{AU}}\right)^{-2} \left(\frac{R_p}{1 \, \mathrm{km}}\right)^{-1}$$
$$x_{max} = \frac{2GM}{b_{max}^2 \sigma^2} \frac{3C_D \Sigma_{g,0}}{4\rho_p R_p}$$

Gravitational focusing $\Theta_s \gg 1 \implies \alpha = 4/3$

•
$$f_X(x) = \frac{3}{\sqrt{8\pi}} x^{1/2} \Gamma(0, x/2) = -\frac{3}{\sqrt{8\pi}} x^{1/2} \mathrm{Ei}(-x/2)$$

$$P(x < x_{max}) \propto x_{max}^{3/2} = 1.09 \cdot 10^{-3} \left(\frac{\sigma}{6.2 \, km/s}\right)^{-3} \left(\frac{b_{max}}{234 \, \text{AU}}\right)^{-2} \left(\frac{R_p}{1 \, \text{km}}\right)^{-1/2}$$
$$x_{max} = \left(\frac{6C_D \Sigma_0}{\rho_p R_p}\right)^{1/3} \frac{GM}{\sigma^2 b_{max}} \left(\frac{b_{max}}{\text{AU}}\right)^{-1/3}$$

back up: Planet formation is inefficient

Radial drift and pebble accretion

- Short drift times: $t_{drift} \sim 10^{3-4} \text{y}$ for $\sim 1 \text{m}$ pebbles (Youdin 2010; Pessah and Gressel 2017)
- Efficient pebble accretion onto planetesimals (Ormel, Klahr 2010; Lambrechts, Johansen 2012)
- first planetesimal formation from streaming instability (Youdin, Goodman, 2005; Johansen+2007 Nature)

Planet formation spans from μ -sized grains to $10^3 {\rm km}$ planets

Ejection of large planetesimals

- Planet planet scattering (Juric, Tremaine 2008); Secular chaos (Wu, Lithwick 2011; Grishin+2018)
- Many ejections in our own Solar System:
 - Nice model and late heavy bombardment (Gomes+2005,

Nature)

• At least $\gtrsim M_{\odot}$ is ejected (Dones+1999; Melosh 2003) with mass function $dN/dm \propto m^{-5/3}$ (Napier 2004)