

Spectral features of different ionizing sources

A. Feltre

R. Bacon, L. Tresse + MUSE consortium, S. Charlot, M. Hirschmann, J. Chevallard + NEOGAL team, M. Mignoli, F. Calura, A. Bongiorno

KICC Workshop 2017 "Emission Line Galaxies with MOS: from cosmic noon to the reionization era"

Spectral models

natural link between theory and observations

* diagnostics of the nature of the ionizing sources

- * diagnostics of the physical properties of the ionized gas
- * combined with SED fitting tools
- * combined with cosmological simulations

SF GALAXY

Several Hll regions

PAGB

diffuse gas heated by postAGB stars

e.g. Binette+92, Flores-Fajardo+11, Hirschmann+17 AGN NLR

AGN accretion luminosity

e.g. Charlot & Longhetti 01, Brinchmann+04, Kewley & Dopita 02, Kewley+13, Blanc+14, Gutkin+16, Jaskot & Ravindranath 16, Nakajima+17

SHOCKS

e.g. Allen+98, Allen+08

e.g. Binette+96, Dopita+02, Groves+04, Nagao+06, Feltre+16, Nakajima+17

NB: for studies on the effect of shocks on emission lines see e.g. Kewley+13, Jaskot & Ravindranath 16

s SF GALAXY

PAGB

Several Hll regions

diffuse gas heated by postAGB stars

e.g. Charlot & Longhetti 01, Brinchmann+04, Kewley & Dopita 02, Kewley+13, Blanc+14, Gutkin+16, Jaskot & Ravindranath 16, Nakajima+17

e.g. Binette+92, Flores-Fajardo+11, Hirschmann+17

SHOCKS

e.g. Allen+98, Allen+08

AGN NLR

AGN accretion luminosity

e.g. Binette+96, Dopita+02, Groves+04, Nagao+06, Feltre+16, Nakajima+17

NB: for studies on the effect of shocks on emission lines see e.g. Kewley+13, Jaskot & Ravindranath 16

SF GALAXY

Several HII regions

PAGB

diffuse gas heated by postAGB stars

AGN NLR

AGN accretion luminosity

* F_ν ~ ν^α (spectral index)
 * Feltre+16 updated

 (inner radius and micro turbulent velocity as model parameters)

 * Charlot and Bruzual, in prep new tracks for massive (WR) stars
 * IMF cutoffs 100-300 M_☉ * single-age (3 to 9 Gyr) * Gutkin+16 updated stellar population

* Hirschmann+17

photoionization code **CLOUDY Ferland+13**

- ⇒ ionization parameter nγ/n_H log(U)
- ⇒ hydrogen gas density log(n_H/cm-3)
- ➡ metallicity Z (gas+dust phase)
- ⇒ dust-to-metal mass ratio (**depletion**) ξd
- \Rightarrow C/O abundance ratio

lonizing spectra

Baldwin, Phillips & Terlevich 81 BPT diagram

Baldwin, Phillips & Terlevich 81 BPT diagram

UV diagnostics

CIV-selected Type2 AGN

* accurate emission line measurements to study the excitation properties of the AGN NLR ionised gas (metallicity, ionisation parameters ...)

CIV-selected Type2 AGN

Chevallard & Charlot 16

MAIN FEATURES

* coherently combines emission from **different components** (stars, gas, dust, AGN)

*adopts **Bayesian approach**

* includes predictions from galaxy formation models

APPLICATIONS

* fit spectro-photometric data at UV to IR
* synthetic catalogues of galaxy SEDs
* study retrievability of galaxy physical parameters

OPTIONS

* broad-band photometry
* and/or spectral features
(e.g. line intensities or EW)
* full spectral fit

see also

E. Curtis-Lake's talk

NB: a public version of BEAGLE for the estimation of photometric redshifts and galaxy physical parameters is available at <u>https://gazpar.lam.fr/</u>

* study the effects of the presence of AGN with different accretion luminosities on the UV/optical spectral features
* produce mock catalogues of UV/optical spectra of AGN2
* fit UV/optical spectra of obscured AGN at any redshift

MgII λ 2800 sample

0.7 < z < 2.34 (**404** sources)

MUSE Hubble Ultra Deep Field Survey **Bacon+17**, in press

* classification based on EW and
 S/N of emission lines and
 spectra + visual inspection

CIII] 1907/1909, [OII] 3726/3729, [NeIII] 3869, [OIII] 4959/5007, Hβ

Feltre+, in prep

MgII λ 2800 sample

MgII emitters show

- * similar sSFR to MgII absorbers
- * bluer UV spectral slope
- * lower dust optical depth
- similar nebular (O/H, ionization parameter)
 properties to MgII absorbers

what is the main driver for this difference?

NB: current tests on selection bias confirm our findings

Ionizing emissivity $\xi_{\rm ion} = N/L_{\rm UV}$

Synthetic nebular spectra

photoionization models from SF galaxies, AGN and PAGB stars

20 cosmological zoom-in simulations of massive galaxies (spatial resolutions: 200 pc) Choi+17; Hirschmann + 17, Naab + 17, in prep.

> successful at reproducing observations of SDSS galaxies

To conclude ...

Comprehensive analyses of optical/UV spectra

* allow the study of the nature of the ionizing source ...
* ... and of the physical properties of the ionized gas
* provide indirect information on galaxy properties

additional studies, accounting for e.g. the effects of shocks, binary stars and ISM absorption

high quality data from future facilities (e.g.JWST/NIRSpec)

increasingly broader view of the Universe

UV ratios of Type 2 AGN

ionization parameter $n\gamma/n_H \log(U)$ -1 to -5 [-2.5 to -5.0 PAGB]

hydrogen gas density $log(n_H/cm-3)$ 2 to 4 [1 to 3 PAGB]

metallicity Z (gas+dust phase) 0.0001 to 0.03 [0.07 AGN, PAGB]

dust-to-metal mass ratio (**depletion**) ξd 0.1 to 0.5

C/O abundance ratio

0.1 to 1

ionization parameter $n\gamma/n_H \log(U)$ -1 to -5 [-2.5 to -5.0 PAGB]

hydrogen gas density $log(n_H/cm-3)$ 2 to 4 [1 to 3 PAGB]

metallicity Z (gas+dust phase) 0.0001 to 0.03 [0.07 AGN, PAGB]

dust-to-metal mass ratio (**depletion**) ξd 0.1 to 0.5

C/O abundance ratio

0.1 to 1