THE ISM OF HIGH REDSHIFT GALAXIES HINTS FROM EMISSION LINES

Andrea Ferrara

Scuola Normale Superiore, Pisa, Italy

INTERNAL PROPERTIES OF HIGH-Z GALAXIES

"DAHLIA", A LBG @ Z=6

AMR simulation (RAMSES) Spatial res = 10 pc H_2 - based SFR prescription Updated SN feedback model Radiation pressure (on dust)

over-dense accreting filaments

Pallottini+17a

DAHLIA: STELLAR COMPONENT

1413 12 11 10 9 Stellar build-up 10 log(M_{*}/M_☉) 9 8 7 6 2.0 Dahlia/Total log(SFR/M_©/yr) SF history 1.5 1.0 0.5 0.0

¹/₃ of CII mass in diffuse, low-Z, weakly emitting gas

DAHLIA: ISM SEEN IN [CII]

Pallottini+17a

Face on

Edge-on

Total [CII] Luminosity $L_{CII} = 3.5 \times 10^7 L_{\odot}$

*

95% of emission co-located with H₂ disk

Maiolino+15, Capak+15, Knudsen+16, Pentericci+16

Best fit relation (Yue+15)

[CII]-SFR RELATION

Bradac+17

INTERNAL PROPERTIES OF HIGH-Z GALAXIES

THE IMPACT OF CHEMISTRY

Pallottini+17b

Equilibrium [Krumholz model]

Non-equilibrium [Coupled with KROME]

• H_2 forms at much higher density ($\approx 300 \text{ vs } 30 \text{ cm}^{-3}$);

✤ ISM becomes more clumpy boosting (by 7×) [CII] line emission.

CO AT HIGH REDSHIFT?

Vallinii+17, arXiv1709.03993

High gas surface density Large Mach number ($\mathfrak{M} \approx 30$) Warm GMCs ($T_k \approx 45K$) CO SLED peaks (a) J=7Low $\alpha_{CO} = \frac{1}{3} \alpha_{CO}$ (Milky Way) CO(7-6) line @ 5σ with ALMA detected (resolved) in 13 (38) hr

Gallerani+17, *in press*

OUTFLOWS

DUST AND IRX- β RELATION

Ferrara+16, 17

- [CII]-detected high-*z* LBGs in Capak+15 sample show FIR deficit, i.e. they are "infrared dark"
- They show a marked deviation from the local infrared excess, IRX (8-1000 μ m), vs. UV slope (β , defined in 1600-2500 Å) relation

A POSSIBLE SCENARIO

Ferrara+16*a*,*b*, *Dunlop*+16, *Bouwens*+16

DUST AND IRX RELATION

$$64'' = 2.56 \text{ kpc}$$

♦ Little is known about the internal properties and ISM of high redshift galaxies

Progress made by combining FIR (ALMA), NIR (JWST) spectra + dust continuum

 \diamond ALMA detections + hi-res simulations show that z > 5 galaxies:

- Are compact and have large reservoirs of dense gas
- Are considerably metal/dust enriched and possibly obscured in SF regions
- Have large SFR/area and strong interstellar radiation fields and outflows
- Are detectable in high-*J* CO lines
- Supervised Machine Learning approaches (GAME) to IFU optical/FIR data very successful when applied to local galaxy studies

Strong potential of SML for JWST and ALMA applications at high-*z*