The Nature of the Ionising Spectrum in a Large Sample of z~3 LAEs

Thomas Fletcher (UCL)

In collaboration with: Kimihiko Nakajima (ESO), Richard Ellis (UCL)

Background - What Caused Reionisation?

AGN?

First Galaxies?

Background - Reionisation

Reionisation is governed by the rate at which ionising photons are produced

 $\dot{n}_{ion} = f_{esc} \cdot \xi_{ion} \cdot \rho_{SFR}$ Integrated Fraction of Number of volume density escaping LyC ionising photons of star forming photons produced per galaxies unit of star formation rate

Background - LAEs as Low-z Analogues

• The spectral hardness (ξ_{ion}) of galaxies during the reionisation era is one of the biggest unknowns

z=3.1 Lyman Alpha Emitting Galaxies (LAEs) as reionisation era analogues

 LAEs are low mass, low metallicity (dust-free)

Background - LAEs as Low-z Analogues

- [OIII] excesses and presumably ξ_{ion} and f_{esc} increase with redshift (ionised bubbles)
- [OIII] excess seen in LAEs is similar to emission measured in IRAC narrow band excesses at z>6
- Hypothesis: Correlation between large [OIII]/[OII] and spectral hardness and LyC leakage (Nakajima & Ouchi 2014)

This work - Sample

Very faint sample, comparable to Stark+14 but a much larger sample

> VIMOS: Lya detected in 68 LAEs at z~3

> LRIS: Lya detected in 40 LAEs at z~3

Apparent UV Magnitude: 24.7-28.9 60 400 Shapley+03, LBGs $z \sim 3$ Stark+14, Lensed $z = 1.4 \sim 3.0$ Erb+14, LAEs $z \sim 2-3$ This work, VIMOS + LRIS, $z \sim 3.1$ - 50 Number of Galaxies

Method - Stacking

- We stack the spectra to measure the mean ξ_{ion} for z~3 LAEs
- We need the velocity offset of Lyman alpha emission compared to nebular lines (which we can't see as the UV metal lines are not visible)

• We use $z_{systemic}$ if it is available or estimate Δv_{Lya} using an empirically derived relation between Δv_{Lya} and EW_{Lya}

Method - Stacking

• Using this relation improves the sharpness of the peaks compared to previous relations between Δv_{Lya} and EW_{Lya}

Stacked Spectra - VIMOS

• CIII] Detected, Limits on CIV and HeII

Photoionisation models

Conclusion

- New relation between $EW_{Ly\alpha}$ and $\Delta v_{Ly\alpha}$ improves sharpness of CIII] and Lya lines
- Spectral hardness increases with $EW_{Ly\alpha}$

Larger EW $\log \xi_{ion} \sim 25.7$ Smaller EW $\log \xi_{ion} \sim 25.5$