The Planck view of ACDM George Efstathiou KICC

ΛCDM? That's Fake News!!!

23 hours ago

The Assertions:

- There are no internal inconsistencies in the Planck data
- Planck polarization tells the same story as Planck temperature
- Temperature and polarization restricted to
 < 800 gives same ACDM parameters as full Planck.
- If your experiment (CMB, LSS, H₀) disagrees with Planck, then either you are wrong, or there is new physics beyond ACDM.

PLANCK FREQUENCYMAPS

143 cleaned with 545

Multipole l

Multipole ℓ

Slow roll parameters

$$\epsilon = \frac{m_{\rm pl}^2}{16\pi} \left(\frac{V'}{V}\right)^2, \quad \eta = \frac{m_{\rm pl}^2}{8\pi} \left(\frac{V''}{V}\right)$$

 $n_s=1-6\epsilon+2\eta, \quad r=16\epsilon, \quad n_t=-2\epsilon/N$ If $V(\phi)=\lambda\phi^lpha$ then ____

 $1-n_s=(\alpha+2)/N, \qquad r=4\alpha/N,$

For $n_s = 0.965$, $N \approx 60$, $\alpha \approx 2.2$, $r \approx 0.15$.

so we have a hierarchy, $\epsilon < \eta$.

'Odd' aspects of Planck spectra?

- Planck temperature spectra want more lensing (A_L >1).
- Planck data favour closed universes.
- High multipoles (I > 800) give different parameters to lower multipoles (e.g. Addison etal 2016, ApJ, 818, 132).
- Outliers in TT spectrum and in TE spectrum (e.g. | > 165 in TE, Obied etal 2017, PRD, 083526).

based on work done with Steven Gratton

Lensing amplitude

Curvature

 $\Delta D_{\ell} \left[\mu \mathrm{K}^2 \right]$

$$S_8 = \sigma_8 (\Omega_m / 0.3)^{0.5}$$

The Conclusions:

- ACDM fits the Planck data perfectly within acceptable statistical errors
- If your experiment (CMB, LSS, H₀) disagrees with Planck, then either you are wrong, or there is new physics beyond ACDM.
- Any new physics must produce temperature and polarization spectra that are degenerate with base ∧CDM over the multipole range 2 ≤
 I ≤ 2500. Any such evidence is strongly dependent on the fidelity of other data.

Non-Gaussianity

 $H_0 = 74.03 \pm 1.403 \text{ km/s/Mpc}$ (Riess etal) Lemos, Lee, GPE, Gratton, 2018 $H_0 = 67.44 \pm 0.58 \text{ km/s/Mpc}$ (Planck)

$$H^{2}(z) = H^{2}_{f} [A(1+z)^{3} + B + Cz + D(1+z)^{\epsilon}]$$

 \mathcal{Z}