KICC WORKSHOP 2017: Emission Line Galaxies with MOS: from cosmic noon to the re-ionisation era 19 SEPTEMBER 2017, KAVLI INSTITUTE, CAMBRIDGE, UK

Cosmic evolution of synthetic nebular emission of massive galaxies

Michaela Hirschmann (IAP) With S. Charlot, A. Feltre, T. <u>Naab, R. Somerville, J. Ostriker, E. Choi</u>

Emission lines in local & distant gal's

Optical nebular emission lines

- ...used to observationally distinguish between log([NII]/Ha) types in the local Universe,
- ▶ Optical selection criteria still applicable at z~>2?!
- OIII]/Hβ found to evolve over cosmic time

Why synthetic nebular emission?

Exploration of synthetic spectra with nebular emission lines of galaxies in a full cosmological context

- How can we distinguish the main ionising sources of a galaxy, incl. composites, at high redshift?
 - Anna's talk: difficult with optical lines
 - What about *UV diagnostic diagrams*? Distinct regions for SF, AGN and *composites*?
- Which is the physical origin of evolving optical emission line ratios?
- Can we identify directly observable signatures in nebular emission for specific physical processes governing galaxy evolution, e.g. AGN feedback?

Cosmological zoom-in simulations

Set of 30 cosmological zoom-in simulations of massive galaxies Choi,...,Hirschmann+17, Hirschmann+17

3e12 M $_{\odot}$ < M_{halo} < 3e13 M $_{\odot}$, x_{spatial} = 200pc, m_{gas}=1.4e5 M $_{\odot}$

Initial conditions of Oser+10, *Hirschmann*+12

"Modern" SPH-code Gadget-3 (Hu+14)

Predictions of realistic massive galaxies with reasonable SFR and metal enrichment histories

 ✓ Choi, Ostriker, Naab, Hirschmann+17 — Simulation overview and general galaxy properties: Low X-ray luminosities, low stellar content,...
✓ Hirschmann, Charlot+17 — Evolution of optical synthetic nebular emission lines

Brennan,...,Hirschmann+17, subm. — Baryon cycle due to AGN-driven outflows

Hirschmann, Zibetti, Gallazzi+17, in prep., — Stellar populations

Frigo, Naab, Hirschmann+17 in prep — Stellar kinematics

Choi,...,Hirschmann+17, in prep — Size evolution

 \checkmark Choi,...,Hirschmann+17, in prep — Metal enrichment of the circum-galactic medium

BH growth & mass, momentum & energy conserving *AGN feedback* (Ostriker+10, Choi+12/13)

Visualization of a zoom-in sim.

Nebular emission over cosmic time

Cosmic evolution of nebular emission lines of simulated of galaxies

Newly developed spectral evolution models (Cloudy)

Cosmological hydrodynamic simulations

Nebular emission from young stars, AGN and post-AGB stellar populations (Feltre+16, Gutkin+16, Hirschmann+17) Sets of zooms of massive halos with and w/o AGN feedback (Choi+16, Hirschmann+17)

I. Are synthetic emission lines consistent with observations of the local Universe?

Optical line-ratios in local galaxies

Reasonably reproducing the observed SDSS results Widely confirming optical selection criteria

II. How do optical emission-line ratios evolve with redshift?

Evolution of optical line-ratios

Hirschmann+17: arXiv:1706.00010

 [OIII]/Hβ increases towards z=2-3 at a given stellar mass
What is the physical origin, extreme ISM conditions (p_{ionized}, Z_{gas}), SFR, ionisation parameter, AGN, elevated N/O or harder ionising radiation?

Origin of the evolving [OIII]/Hβ

Progenitors at fixed stellar mass bin $10.5 < \log(M_{\rm stellar}/M_{\odot}) < 11.0$

 Ionisation parameter, governed by SFR, is driving the evolution of [OIII]/Hβ, other parameters (dust-to-metal mass ratio - N/O, Z_{stars}, n_H have no dominant effect)

Origin of the evolving $[OIII]/H\beta$

- Why can SFRs lead to an evolution in [OIII]/Hβ at fixed stellar mass?
- $[OIII]/H\beta$ is increasing with increasing SFR
- \blacktriangleright AGN-driven winds cause a strong decrease in SFR, and thus, the decrease of [OIII]/H β

Evolution of the SF branch

Focus on SF-dominated galaxies with log(BHAR/SFR) < -4

Observations

With AGN fb

Hirschmann+17: arXiv:1706.00010

Evolving [OIII]/Hβ ratios are consistent with observed trends
Offset in [OIII]/Hβ is observational signature for AGN fb?!

III. How to best distinguish ionising sources in high-z galaxies?

Optical line-ratios of distant galaxies

Hirschmann+17, in prep.

Toward high z, different galaxy types tend to occupy the same region *Optical selection criteria break down*

Due to more metal-poor galaxies at high z (Gutkin+16, Feltre+16, see also Kewley+13)

Optical line-ratios of metal-rich galaxies

$\log([NII]/[OII])$ scales tightly with Z_{gas}

For metal-rich galaxies "modified" optical selection criteria reasonable also at higher z

What about metal-poor galaxies, particularly at high redshifts?

UV line-ratios of distant galaxies

Galaxies of ALL metallicities in a given redshift interval

• Consistent with sparse observations, but no good distinction of galaxy types

UV line-ratios of metal-poor gal's

Select metal-poor galaxies with log([NII]/[OII]) < -0.9:

 For metal-poor gals, UV diagnostics can provide reasonable selection criteria for different galaxy types, at least out to z~5

Completeness and purity

...for UV selection criteria for galaxies with log([NII]/[OII]) < -0.9

<u>Completeness</u>: based on the theoretical galaxy type definition, fraction of galaxies which would be identified as the same type with UV criteria <u>Purity</u>: vice versa

 High purity and completeness fractions

- Similarly good diagnostics:
 - CIII]/HeII vs OIII/HeII
 - CIII]/HeII vs SiIII/HeII,
 - ▶ CIII]/HeII vs (CIII]+CIV)/HeII or
 - ▶ CIII]/HeII vs NIII/HeII

Summary

- COSMIC EVOLUTION OF SYNTHETIC NEBULAR EMISSION: Nebular emission models + Cosmological simulations
- Synthetic line-ratios consistent with observations in the local and distant Universe (optical+UV)

PHYSICAL ORIGIN OF EVOLVING OPTICAL LINE-RATIO [OIII]/Hβ:

- Decreasing SFR towards z=0 (due to AGN feedback)
- Observational signature for AGN feedback in massive galaxies

DIAGNOSTICS TO DISTTINGUISH GALAXY TYPES AT HIGH Z:

- Metal-rich galaxies: optical selection criteria as traditionally used
- ▶ Metal-poor galaxies: UV diagnostic diagrams out to z~6
- UV selection criteria can be helpful for the interpretation of large samples of high-quality high-z data from future facilities, e.g. NIRSpec on board JWST...

FUTURE

- Adding shocks
- Adding absorption line models from Alba (Vidal-Garcia+17)
- Spatially resolved emission/absorption line maps, gradients etc. confronting with current and future IFU data