Islands of neutral hydrogen below redshift 5.5
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At the same redshift, the Lya forest looks very different along different sightlines
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At the same redshift, the Lya forest looks very different along different sightlines
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Opaqgue sightlines are already seen below z = 5.5

The scatter among sightlines is larger than expected for fluctuations in density
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Can we learn something about reionization from this data”
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Can we learn something about reionization from this data”
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| et’s look in radiative transfer simulations that can
model these temperature and UV fluctuations...



P(< Teﬁ‘)

| et’s look in radiative transfer simulations that can
model these temperature and UV fluctuations...
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Previously all our simulations had been calibrated to match the photoionization rate

But this is a derived quantity... the real observable is the mean flux
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Previously all our simulations had been calibrated to match the photoionization rate

But this is a derived quantity... the real observable is the mean flux
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We find that matching the mean flux
requires a later reionization
(ending at z = 5.3)
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6 The increasing scatter in the effective
< optical depth above z = 5.5 is driven by
- large islands of neutral gas in the IGM
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In this late reionization model, we can now produce
distributions of Lya opacities as broad as observed
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What about the large Lya absorption troughs that are observed?
LyB transmission seen, implying an ionized IGM

o
N

e &

k 4 Lya

: 1 LyB

.” ‘ ]l " h‘, 1“‘ lA,‘ y Wil } Ty | ﬁ_
o L . Becker+15




Normalized Flux

Flux

What about the large Lya absorption troughs that are observed?
LyB transmission seen, implying an ionized IGM
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What about the large Lya absorption troughs that are observed?
LyB transmission seen, implying an ionized IGM




Small ionized bubbles within the neutral islands allow for transmission of Ly[3
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Searches for Lyman-a emitters around the trough can distinguish between different
models for the large spatial fluctuations in the Lyman-a forest opacities
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In this model, the troughs are in the last
regions to ionize (i.e., voids)

Find a deficit of LAEs around the most opaque
sightlines as observed
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Observations of the Ly[ forest are also very useful for

constraining the properties of the IGM
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A late reionization model is consistent with these

Ly[3 observations
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- Matching the mean flux in the Lyman-a forest requires an IGM
that is still significantly neutral below redshift 6

This model naturally reproduces the large spatial fluctuations in
the opacity of the Lyman-a forest

- This model also explains the large observed Lyman-a absorption
troughs and lack of Lyman-a emitters surrounding them, as well
as recent observations of the Lyman-3 forest



