The search for inflationary B-maod
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Motivation/Background

»Using the CMB and other data the LCDM cosmological paradigm has
been developed — it works great and allows us to understand the
development of the universe all the way back to a high energy state.

»However, LCDM leaves many unanswered questions such as the “horizon
problem” and how the empirically simple conditions at the start of the
plasma phase were set up.

» Theory of “Inflation” added on the beginning of LCDM to explain.

»>If it happened Inflation will have made a background of gravitational
waves which will have imprinted a B-mode (curl) into the polarization
pattern of the CMB.

»We may be able to detect these if we can make a sensitive enough
telescope — a wide range of inflation models exist — the simplest are
already ruled out — more complex ones can produce r which is
undetectably small...
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CMB power spectra
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In standard ACDM only E-modes are
present at last scattering

= During propagation
& some of the E-modes
¥ are confused into B-

modes by lensing

Inflationary gravitational waves are unique
source of intrinsic B-modes
— peaking at =80 : few degree scales
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CMB power spectra

Contributions from PGW to T and E-
spectra not shown here — However,
ability to constrain r from these
already maxed out at cosmic variance
— the main way to make further

\ source of intrinsic B-modes

Multipole |

progress is using B-modes...

During propagation

¥ some of the E-modes
¥ are confused into B-

modes by lensing

Inflationary gravitational waves are unique

NN — peaking at |1=80 : few degree scales



BICEP/Keck Basic Experimental Strategy

— Small aperture telescopes (cheap, fast, low systematics)
— Target the 2 degree peak of the PGW B-mode

— Integrate continuously from South Pole

— Observe 1% patch of sky (smaller is actually better!)

— Scan and pair difference modulation



Foreground emission from our galaxy
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Overcoming Polarized Foreground Contamination

At low frequency Mg frequencies At high
synchrotron minimum contamination frequency dust

contamination contamination
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Overcoming Polarized Foreground Contamination

Atlow frequency  \id frequencies At high
synchrotron minimum contamination frequency dust
contamination contamination
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BICEP/Keck Experimental Concept

Small aperture
Wide field of view
Cold refractor




Planar superconducting
detector arrays

...designed to scale
in frequency

Up to 2013 — all 150GHz

2014 — 2x95 3x150GHz

2015 — 2x95 1x150 2x220GHz

2016 — B3  1x150 4x220GHz

2017 - B3 4x220 1x270GHz
018 — B3 4x220 1x270GHz
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Why do this at the Pole?

10m South Pole Telescope

High and dry — see out into space

On Earth’s rotational axis - One day/night cycle per year
— Long night makes for great quality data

Good support infrastructure — power, cargo, data comm
Food and accommodation provided
Even Tuesday night bingo...
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Clem Pryke for The Bicep2 Collaboration



Total Sensitivity (nK)
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Add to the mix: Planck at 7 frequencies and WMAP at 2 frequencies

Polarized galactic
synchrotron
dominates

at low frequencies

30 GHz

44 GHz

70 GHz

100 GHz

143 GHz From arxiv 1212.5225

217 GHz

353 GHz
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Multicomponent parametric likelihood analysis

Take the joint likelihood of all the spectra simultaneously
vs. model for BB that is the ACDM lensing expectation +
[/ parameter foreground model + r

foreground model = dust + synchrotron

! !

Ayt A amplitudes @ 1=80

synch

frequency spectral
Bdust Bsynch indices
spatial spectral
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Tensor-to-scalar ratio (70.002)
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BK15 Squeezes down a little moreinon r
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BICEP3: Next Generation
Receliver

All 95 GHz

2500 detectors in modular
focal plane

Large-aperture optics and
infrared filtering
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BK18 95GHz Map (Keck)
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BK18 150GHz Map (BICEP2+Keck)
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Focal Plane Telescope and Mount

Beams on Sky

BICEP2
(2010-2012)
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Degrees on sky

Stage 2
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Stage 3
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BICEP Array Under Construction

4 wide-field receivers
30/40 GHz
95 GHz

150 GHz
220/270 GHz

Wide-field cryogenic receiver

40GHz

When complete >30,000 detectors socH:
Focal plane layout






New mount about to ship from UMN to Pole
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Lots of new hardware
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Map Sensitivity [uK—arcmin]

o(r)

10

10

Stage 2 Stage 3

BICEP Arra

Keck Array

BICEP3

:\“_150 o As we increase the sensitivity
L +

270 GHz
40 GHz

220 GHz 30 GHz

95 GHz \ E

the sample variance on the
lensing B-modes become the

10 ¢

_ | | i i | limiting factor
jK‘P\‘\'\
BK14

107

No Delensing

= . Delensed w/ SPT-3G -

il ] =
.... - RS -
.... ~§~~
-~ --—

LE
" a
-
......
" w
L ]

TTees, Raw Sensitivity

| | I | | | I L I

2013

2014

2015 2016 2017 2018 2019 2020 2021 2022 2023



Map Sensitivity [uK—arcmin]

o(r)

10

10

10°

Stage 2

Stage 3

Keck Array

220 GHz

BICEP3

270 GHz
40 GHz

30 GHz

BICEP Arra

No Delensing

We must delense to
make further progress

Delensed w/ SPT-3G ]
Sy — S — -

TTees, Raw Sensitivity

L I

2013

2014

2015

2016

2017

2018 2019 2020

2021

2022 2023



Can be used to reconstruct the
High resolution maps lensing deflection map...

1h

30m 1h00m 30m 00m 23h30m 00m 22h30m

Dec (J2000)

...which can then be used to
calculate and remove the

_ 2a s . lensing signal enabling a

e deeper search for inflationary

gravitational waves

Dec (J2000)

60"




Conclusions

> BICEP/Keck lead the field in the quest to detect or set limits on inflationary
gravitational waves:
> BK15 result sets r; ,5<0.06 and o(r)=0.020

> BICEP3 is running since 2016 with high sensitivity at 95GHz, and Keck
Array continues to run at 220GHz, plus new 270GHz band
We intend to go straight to BK18 analysis which will approach o(r)=0.010

|

BICEP Array is under construction and will go much further:
Next gen. receivers in five bands

Delensing in conjunction with SPT3G under development
Projecting BK23 o(r)<0.003

YVYVY

|

And beyond that is mega experiment CMB-S4...

> Foreground complexity is and will remain a serious issue — the hope is that
we can measure it and constrain r simultaneously without a large loss of
sensitivity. Time will tell.



